摘要:
对扇区流量进行短期预测,是精准实施扇区流量优化和管理措施的前提。基于分解集成预测方法论,建立了变分模态分解-最小二乘支持向量机(Vibrational mode decomposition-least square support vector machines,VMD-LSSVM)预测模型。首先,应用变分模态分解(Vibrational mode decomposition,VMD)方法将扇区流量时序数据分解为若干个模态;然后,使用最小二乘支持向量机(Least square support vector machines,LSSVM)模型分别对模态进行预测;接着,对模态的预测结果进行加和集成,得到了最终的预测值。算例计算结果显示,针对60 min统计尺度流量时间序列,VMD-LSSVM模型在1~6 h的均等系数(Equal coefficient, EC)值为0.97,在7~12 h的EC值为0.94;与差分自回归滑动平均模型(Autoregressive integrated moving average model,ARIMA),反向传播(Back propagation,BP)神经网络和LSSVM单一模型相比,VMD-LSSVM模型1~6 h的EC值分别提升了11.5%、7.8%、4.3%;与完整聚合经验模态分解(Compete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)-LSSVM、CEEMDAN-BP和VMD-BP相比,提升了2.1%、6.6%、5.4%;与30 min和15 min统计尺度相比,的EC值分别提升了6.6%和19.8%;针对时间普适性的8次实验,EC值均在0.94以上,针对27个扇区普适性的实验,有24个扇区的EC值在0.9以上。算例结果表明,VMD-LSSVM模型具备良好的预测性能和较好的普适性,用于扇区流量短期预测是可行的和有效的。