摘要:
针对基本蝴蝶优化算法(Butterfly optimization algorithm,BOA)在进行无人机(Unmanned aerial vehicle, UAV)三维航迹规划时存在的搜索速度慢、搜索精度低以及易陷入局部最优等问题,提出一种改进的蝴蝶优化算法(Improved butterfly optimization algorithm,IBOA)。在全局搜索阶段提出对数自适应惯性权重策略和动态更新调节策略,提高了算法全局搜索能力和搜索精度。同时,在局部搜索阶段,提出一种动态概率余弦选择策略,增加位置更新多样性,避免陷入局部最优。首先,为检验改进算法与基本算法的寻优性能,在部分标准多元函数上进行仿真对比。对比结果表明,改进算法对复杂函数具有较强的寻优能力,能在更短时间内找到全局最优解。然后,在二维路径规划仿真中对比了改进算法与PSO算法性能,从对比结果看,IBOA具有更优的规划效果。接着,利用山峰模拟函数对UAV三维航迹规划进行建模,将改进算法应用到航迹规划中,利用MATLAB仿真对比了不同复杂度环境下的航迹规划效果。仿真实验表明:相同实验条件下,该优化算法较BOA综合适应度值减小21.9%,具有搜索速度快、搜索精度高等优点,能够有效地指导UAV在三维环境中完成自主导航避障任务。