DOI:10.16356/j.1005-2615.2025.02.004

分布式推进旋翼飞行器回转颤振特性研究

程 毅,余智豪,王司文,赵金瑞

(中国直升机设计研究所,景德镇 333001)

摘要:针对高速前飞状态分布式推进旋翼飞行器存在的回转颤振动力学问题,提出了一种通用性强且快速高效 分布式多旋翼/倾转机翼耦合气弹动力学分析方法。该方法基于中等变形梁理论,考虑旋翼和机翼间弹性、惯性 耦合,采用基于CFD修正的片条理论,建立分布式多旋翼/倾转机翼气弹动力学分析模型,研究其前飞状态下的 回转颤振特性。在证明了分析方法的准确性后,同时研究了耦合系统动力学参数(机翼、短舱和旋翼等)对飞行 器回转颤振临界速度的影响。结果表明:系统先发生扭转失稳,后发生面内弯曲失稳,机翼扭矩刚度对系统临界 颤振速度影响程度最大;其次是面外和面内弯曲刚度,其颤振运动的三维效应十分明显,呈现为机翼扭转和面内 外弯曲模态耦合。在低速状态下将升力桨张开并提高旋翼数量能有效增加系统气弹稳定性,无铰式桨叶挥舞刚 度对系统临界颤振影响不大,增大旋翼拉力和降低旋翼转速有利于提高系统临界颤振速度,而增加旋翼和短舱 高度则会降低系统临界颤振速度。

关键词:分布式推进;倾转机翼;气弹动特性;大展弦比;回转颤振
中图分类号:V214.1+1
文献标志码:A
文章编号:1005-2615(2025)02-0243-09

Research on Whirl-Flutter Characteristics of Distributed Propulsive Rotorcraft

CHENG Yi, YU Zhihao, WANG Siwen, ZHAO Jinrui (China Helicopter Research and Development Institute, Jingdezhen 333001, China)

Abstract: Aiming at the problem of whirl-flutter dynamics of distributed propulsion rotorcraft in high-speed forward flight state, this paper proposes a highly versatile, fast and efficient distributed multi-rotor/tilt-wing coupled aeroelastic dynamics analysis method. Based on the theory of moderately deformed beams, this method takes into account the elastic and inertial coupling between the rotors and the wings. By using the strip theory corrected by CFD, a distributed multi-rotor/tilt-wing aeroelastic dynamics analysis model is established to study its whirl-flutter characteristics in the forward flight state. After proving the accuracy of the analysis method, this paper also studies the influence of the dynamic parameters of the coupled system (such as the wings, nacelles and rotors, etc.) on the critical whirl-flutter speed of the aircraft. The results show that the system first experiences torsional instability and then in-plane bending instability. The torsional stiffness of the wings has the greatest influence on the critical flutter speed of the system, followed by the out-of-plane and inplane bending stiffness. The three-dimensional effect of the flutter motion is obvious, presenting as the coupling of the torsional and in-plane and out-of-plane bending modes of the wings. Opening the lift rotors and increasing the number of rotors at low speeds can effectively increase the aeroelastic stability of the system. The flapping stiffness of the hinge-less blades has little influence on the critical flutter of the system. Increasing the rotor thrust and reducing the rotor speed are beneficial to increasing the critical flutter speed of the system, while increasing the height of the rotors and nacelles will reduce the critical flutter speed of the system.

基金项目:直升机动力学全国重点实验室基金(2023-HA-LB-067-08)。

收稿日期:2024-08-17;修订日期:2024-10-08

通信作者:程毅,男,工程师,E-mail:chengy012@avic.com。

引用格式:程毅,余智豪,王司文,等.分布式推进旋翼飞行器回转颤振特性研究[J].南京航空航天大学学报(自然科学版),2025,57(2):243-251. CHENG Yi, YU Zhihao, WANG Siwen, et al. Research on whirl-flutter characteristics of distributed propulsive rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics (Natural Science Edition), 2025, 57(2):243-251.

Key words: distributed propulsion; tilting wings; aeroelastic characteristics; large aspect ratio; whirl-flutter

分布式推进旋翼飞行器[1-2]作为电动垂直起降 飞行器 (Electric vertical take-off and landing, e-VTOL)中的一种,该构型的旋翼(升力桨和推力 桨)分布于机翼前缘[34],直升机悬停状态下所有旋 翼单元均参与工作,前飞状态下升力桨停转折叠, 倾转过渡过程[5-6]旋翼将随机翼一起做大角度倾转 运动,可以高效利用分布式多旋翼和大展弦比机 翼[7-8],能够在低空领域实现垂直起降和高速巡航, 使其在城市空中交通、区域物流运输、医疗急救、旅 游观光等多个领域具有广泛的应用前景。同时该 构型具备高安全冗余、低噪声、绿色低成本的显著 优势,是未来低空经济发展中最具发展前景的"新 质"构型之一。但高速前飞时该构型的分布式多旋 翼与大展弦比柔性机翼间存在运动模态耦合,同时 多旋翼间的气动干扰及其气动力、惯性力和陀螺力 的相互作用,都使得分布式多旋翼/倾转机翼耦合 系统存在复杂的气弹耦合动力学问题^[9-10]。

回转颤振现象的本质早已被解析法描述出来, 但直到Electra坠机事件后该现象才得以重视。 1984年科研人员对 V-22 缩比模型[11]进行风洞试验 时发现其回转颤振临界速度较低,为此Slaby等通 过优化旋翼短舱气动外形、调整安装部位等方法提 高该构型回转颤振临界速度^[12]。对于分布式推进 旋翼飞行器,通常使用大展弦比机翼以安装更多的 旋翼,同时采取薄翼型设计以降低飞行器重量,这 使得机翼的频率较低,在突风作用和分布式多旋翼 脉动载荷影响下,极易发生回转颤振失稳,如 NASA的Helios无人机^[13],就是在受到阵风扰动后 发生回转颤振失稳,造成飞机破坏坠机^[14]。而对于 分布式多旋翼/倾转机翼飞行器,NASA早在2016 年就开展了相关设计研究^[10,15],研发了GL-10^[16]、 LA-8^[17-18]等一系列技术验证机;Dede等^[19]创建了一 个基于修正片条理论和非定常模型的分布式多旋 翼/倾转机翼耦合低阶气弹模型,能有效预测系统 机翼颤振和回转颤振特性;其他研究团队也通过对 Joby^[20]、XH30^[21]等构型开展了气弹动力学分析 研究。

因此,针对分布式多旋翼与倾转机翼间存在的 复杂气动/弹性/惯性耦合问题,本文提出了一种基 于模块化思维的适用于分布式推进旋翼飞行器的 隐式气弹响应分析方法,对分布式多旋翼/倾转机 翼耦合系统进行气弹动力学分析和回转颤振特性 研究,掌握其高速前飞状态下耦合系统气弹稳定性 特别是回转颤振特性,研究不同动力学参数对系统 临界颤振速度的影响规律^[22],分析结论可为分布 式多旋翼/倾转机翼飞行器飞回转颤振设计提供理 论支撑。

1 分析方法

分布式推进旋翼飞行器如图1所示,大展弦比 机翼上同时布置了多个旋翼。

图 1 分布式推进旋翼飞行器 Fig.1 Distributed propulsion rotorcraft

本文采用 Hamilton 原理对分布式多旋翼/倾转机翼耦合动力学方程进行推导,其表达式如下

$$\delta \Pi = \int_{t_1}^{t_2} (\delta U - \delta T - \delta W) dt = 0 \qquad (1)$$

式中:*\dlowU*为应变能变分;*\dlowT*为动能变分;*\dlowW*为外力虚功。它的组成如下

$$\begin{cases} \delta U = \sum_{m=1}^{N_r} \left[\sum_{n=1}^{N_b} \delta U_b \right] + \delta U_W \\ \delta T = \sum_{m=1}^{N_r} \left[\sum_{n=1}^{N_b} \delta T_b \right] + \sum_{m=1}^{N_r} \delta T_P + \delta T_W \quad (2) \\ \delta W = \sum_{m=1}^{N_r} \left[\sum_{n=1}^{N_b} \delta W_b \right] + \delta W_W \end{cases}$$

式中:下标W、P、b分别表示机翼、短舱、桨叶;N_b、 N_r分别为桨叶和旋翼个数。假定短舱为刚体,忽 略其气动力影响。

1.1 坐标系定义

图 2 为本文建立的分布式多旋翼/倾转机翼耦 合系统坐标系。图中, x_w, y_w, z_w 为机翼变形系, x_H, y_H, z_H 为桨载不旋转系,P为短舱与机翼连接点,h为短舱高度, ψ 为桨叶方位角,V为来流风速。后 续依次建立机翼未变形系和变形系 $X_1Y_1Z_1, X_W$ - $Y_wZ_w, 短舱系 X_PY_PZ_P, 桨载不旋转系和旋转系$ $<math>X_HY_HZ_H, X_RY_RZ_R, 桨载平面系 X_UY_UZ_U, 桨叶未变$ $形和变形系 <math>X_BY_BZ_B, \xi_D\eta_{D SD}$ 。

Fig.2 Schematic diagram of the coordinate system

(3)

1.2 结构模型

基于中等变形梁理论,通过积分求得桨叶、机 翼应变能 *d* U_b、*d* U_w表达式为

$$\delta \boldsymbol{U}_{b} = \delta \boldsymbol{U}_{W} = \int_{0}^{L} \iint_{A} (\sigma_{xx} \delta \boldsymbol{\varepsilon}_{xx} + \sigma_{xy} \delta \boldsymbol{\varepsilon}_{xy} + \sigma_{xz} \delta \boldsymbol{\varepsilon}_{xz}) \cdot d\eta d\varsigma dx = \int_{0}^{L} \left\{ \boldsymbol{U}_{u'} \delta \boldsymbol{u}' + \boldsymbol{U}_{v'} \delta \boldsymbol{v}' + \boldsymbol{U}_{w'} \delta \boldsymbol{w}' + \boldsymbol{U}_{v''} \delta \boldsymbol{v}'' + \boldsymbol{U}_{\phi'} \delta \boldsymbol{\phi}' \right\} dx$$

式中: σ 、 ε 分别为梁(机翼或桨叶)剖面应力与应变; η 、 ζ 为剖面上任意点的坐标;L代表梁长度;u、v、w、 ϕ 为梁的自由度。

惯性坐标系中桨叶剖面上任意点的位移矢径为 $r_{\rm b} = [x_{wh} \ R_{wp} + y_{wh} \ z_{wh}] + [x_{hp} \ y_{hp} \ z_{hp}]T_{PI} + [x + u \ v \ w]T_{UI} + [0 \ \eta \ \varsigma]T_{DI}$ (4)

式中:*x_{wh}、y_{wh}、z_{wh}为短舱与机翼连接点P处的变形 位移;<i>R_{wp}为P*点到机翼根部的距离;*x_{hp}、y_{hp}、z_{hp}为P* 点到桨毂中心的位移坐标;*η、*5为桨叶剖面上任意 点到变距轴线的位移坐标;*x*为桨叶上任意点展向 位置;*T_{PI}、T_{UI}、T_{DI}*为惯性系与短舱系、桨毂平面系 和桨叶变形系间的转换矩阵。

对桨叶位移矢径求导即可得到桨叶运动速度, 即 $V_{b} = \dot{r}_{b} = dr_{b}/dt$,考虑机翼运动影响,桨叶动能 变分表达式 δT_{b} 为

$$\delta T_{b} = \int_{0}^{R} \left(\iint_{A} \rho V_{b} \delta V_{b} d\eta d\varsigma \right) dx = \{ T_{u} \delta u + T_{v} \delta v + T_{w} \delta w + T_{\phi} \delta \hat{\phi} + T_{v'} \delta v' + T_{w'} \delta w' + T_{F} + T_{x_{b}} \delta x_{b} + T_{y_{b}} \delta y_{b} + T_{z_{b}} \delta z_{b} + T_{\phi_{b}} \delta \phi_{b} + T_{a_{b}} \delta \alpha_{b} + T_{\phi_{b}} \delta \phi_{b} \} dx$$

$$(5)$$

式中 $x_h, y_h, z_h, \phi_h, \alpha_h, \psi_h$ 为P点自由度。

短舱动能变分 δT_P用质点体积分得到,而机翼 不用计及其他部件运动影响,其动能变分表达式 δT_w为

$$\begin{cases} \delta T_{\mathrm{P}} = \iint_{V} (T_{x_{k}} \delta x_{h} + T_{y_{k}} \delta y_{h} + T_{z_{k}} \delta z_{h} + T_{\phi_{k}} \delta \phi_{h} + T_$$

1.3 气动模型

桨叶气动力虚功为广义气动力L_u、L_v、L_w、L_φ 做的功,桨叶剖面相对气流速度V_B分为来流速度 V_i和桨叶运动速度V_b,其表达式为

 $V_{\rm B} = -V_{\rm f} + V_{\rm b} = \begin{bmatrix} U_{\rm R} & U_{\rm T} & U_{\rm P} \end{bmatrix}$ (7) 式中: $U_{\rm R}$ 、 $U_{\rm T}$ 、 $U_{\rm P}$ 分别为桨叶剖面气流速度在垂直 于桨盘平面方向、桨盘平面切向方向、桨盘平面径 向方向的分量。

基于片条理论, 剖面气动力为准定常环量(下标C)和非环量(下标NC)气动力的叠加, 即

$$\begin{cases}
L_{u} = (L_{u})_{c} \\
L_{v} = (L_{v})_{c} \\
L_{w} = (L_{w})_{c} + (L_{w})_{NC} \\
M_{\phi} = (M_{\phi})_{c} + (M_{\phi})_{NC}
\end{cases}$$
(8)

桨叶气动力虚功变分表达式为

$$\delta \boldsymbol{W}_{\mathrm{b}} = \int_{0}^{L} \left[L_{u} \delta u + L_{v} \delta v + L_{w} \delta w + \boldsymbol{M}_{\phi} \delta \hat{\phi} \right] \mathrm{d}x \quad (9)$$

由于构型原因,旋翼随机翼一起倾转,旋翼尾 流始终会对机翼部分区域(滑流区)产生影响,剩余 区域为自由流区。机翼自由流区气流速度 V_{w1}只 受到来流风速 V_i和机翼运动速度 V_w影响,而滑溜 区可以看作处于旋翼尾流收缩的圆柱形气流中,忽 略柱形气流的周向速度,桨其似为柱形均匀流,圆 柱气流的半径收缩公式为

 $R_{h} = R \cdot (0.78 + 0.22 \cdot e^{-0.3 - 2h \cdot \sqrt{C_{T}} - 60 \sqrt{C_{T}}})$ (10) 式中: R 为桨叶半径; C_T 为拉力系数; h 为短舱高度; R_h为滑流区柱形气流半径。

如图 3 所示, 滑流区柱形气流流量通过气体连续性方程计算得到, 满足以下表达式

 $(U_{Tw} + v_i) \cdot 2\pi R^2 = (U_{Tw} + v_1) \cdot 2\pi R_h^2$ (11) 式中: U_{Tw} 为机翼剖面气流速度在桨盘平面切向方 向的分量; v_i 为诱导入流平均值; v_1 为尾流对滑流 区气流速度的弦向增量。

图 3 机翼来流区划分

Fig.3 Division of the inflow area of wing

滑流区气流速度 V_{w2}为

$$V_{W2} = -(V_f + v_1) + V_W$$
 (12)
机翼气动力虚功变分表达式 δW_W 为

$$\delta W_{\rm W} = \int_{0}^{L} \left[L_u \delta u + L_v \delta v + L_w \delta w + M_{\phi} \delta \hat{\phi} \right] \mathrm{d}x \ (13)$$

1.4 气弹动力学方程

对系统 δU、δT、δW 进行线化处理和有限元离 散,通过多桨叶坐标转换建立旋翼整体矩阵,将模 态缩减后的旋翼、短舱和机翼矩阵进行组集,进而 推导得到分布式多旋翼/倾转机翼耦合动力学方 程,其表达式如下

$$M^{s}(t)\ddot{q}(t) + C^{s}(t)\dot{q}(t) + K^{s}(t)q(t) = F(t) + F(q, \dot{q}, \ddot{q}, t)$$
(14)

式中:角标S表示结构矩阵;q(t)为广义自由度; F(t)为常量项力; $F(q, \dot{q}, \ddot{q}, t)$ 为结构非线性力和气动力项。

式(14)的稳态解为q"(t)、q"(t)、q"(t),在稳态 平衡位置进行有限差分,求得系统气动M、C、K 阵,用角标A表示,其表达式如下

$$\begin{cases} \boldsymbol{M}^{\mathrm{A}}(t) = \frac{\partial F^{n}(q, \dot{q}, \ddot{q}, t)}{\partial q^{n}} \\ C^{\mathrm{A}}(t) = \frac{\partial F^{n}(q, \dot{q}, \ddot{q}, t)}{\partial \dot{q}^{n}} \\ \boldsymbol{K}^{\mathrm{A}}(t) = \frac{\partial F^{n}(q, \dot{q}, \ddot{q}, t)}{\partial \ddot{q}^{n}} \end{cases}$$
(15)

则由式(14)有

 $M(t)\ddot{q}(t) + C(t)\dot{q}(t) + K(t)q(t) = F(t) \quad (16)$ $\vec{x} \neq : M(t) = M^{s}(t) - M^{A}(t), \quad C(t) = C^{s}(t) - C^{A}(t), \quad K(t) = K^{s}(t) - K^{A}(t), \quad \text{Mid}(16) = 0 \quad \text{Mid}(16)$ $\begin{bmatrix} I & 0 \\ 0 & M(t) \end{bmatrix} \begin{cases} \dot{q}(t) \\ \ddot{q}(t) \end{cases} - \begin{bmatrix} 0 & I \\ -K(t) & -C(t) \end{bmatrix} \begin{cases} q(t) \\ \dot{q}(t) \end{cases} = \begin{cases} 0 \\ F(t) \end{cases}$ (17)

式中:I为单位矩阵;0为零矩阵。

令 $\mathbf{y}(t) = \{q(t) | \dot{q}(t)\}^{\mathsf{T}}, F(t) = 0, 则式(17)$ 可写为

$$\dot{\mathbf{y}}(t) = A\mathbf{y}(t) + G \tag{18}$$

$$\vec{x} \div : A = \begin{bmatrix} 0 & I \\ -\left[M(t)\right]^{-1} K(t) & -\left[M(t)\right]^{-1} C(t) \end{bmatrix},$$
$$G = \begin{cases} 0 \\ \left[M(t)\right]^{-1} F(t) \end{cases}^{\circ}$$

基于 Floquet 理论,式(18)在 t 时刻响应解可以 由零时刻响应解通过线性组合表达为

$$\dot{\boldsymbol{y}}(t) = \boldsymbol{\phi}(t, t_0) \boldsymbol{y}(t)$$
(19)
将式(19)代人式(18),有

$$\dot{\phi} = A\phi \tag{20}$$

由式(19)和式(20)通过龙格库塔法可以求解 得到t时刻的系统转换矩阵 $\boldsymbol{\Phi}(t,0)$,其表达式为

$$\phi_{N+1} = \phi_N + \frac{1}{6} (K_1 + 2K_2 + 2K_3 + K_4)$$

$$K_1 = A_N \phi_N$$

$$K_2 = A \left(t_n + \frac{h}{2} \right) \left(\phi_N + \frac{h}{2} K_1 \right)$$

$$K_3 = A \left(t_n + \frac{h}{2} \right) \left(\phi_N + \frac{h}{2} K_2 \right)$$

$$K_4 = A (t_n + h) (\phi_N + hk_3)$$
(21)

式中:h为时间求解步长,则矩阵 ϕ 的特征值矩阵

表达式为

$$\boldsymbol{\Lambda} = \frac{1}{T} \ln \boldsymbol{\Theta} \tag{22}$$

式中:**Λ**为对角阵;**T**为系统周期;**⊙**为矩阵**Φ**的特 征矩阵,其实部和虚部分别为系统的模态阻尼和频 率,通过分析特征矩阵**⊙**即可得到系统气弹稳定 性和回转颤振特性。

2 计算结果

2.1 XV-15倾转旋翼机

以 XV-15 倾转旋翼机为验证模型,通过分析 其在风车状态下系统气弹稳定性来验证本文分析 方法的准确性,倾转系统主要参数如表1所示。

表 1 XV-15倾斜旋翼机主要参数

 Table 1
 Main parameters of XV-15 tiltrotor aircraft

旋翼参数					
片数	洛克数	半径/m	预锥角/(°)	转速/(r•min ⁻¹)	
3	3.83	3.82	2.5	458	
机翼/短舱耦合频率/Hz					
一阶面外弯曲频率q1 一阶面内弯曲频率q2 一阶扭转频率p1					
2 2	2.4	5.1		5.9	

对 XV-15 回转颤振特性进行计算,结果如图 4 所示。由图 4(a)可知,随着速度增加,机翼面内弯 曲和扭转模态频率随之降低,但面外弯曲模态频率 基本不变;由图 4(b)可知,随着速度增加,机翼面 内、外弯曲阻尼随之降低,而扭转阻尼有所提高;机 翼面外和面内弯曲的模态阻尼分别在 165、183 m/s 时变为负数,系统依次发生面外和面内颤振失稳。 本文计算的 XV-15 机翼模态频率与文献[23]基本 吻合,阻尼变化趋势也是一样的,仅在高速前飞时

面内弯曲阻尼有一定误差,这说明本文建立分析方 法准确。

2.2 分布式推进旋翼飞行器

利用本文提出的分析方法,对分布式多旋翼/ 倾转机翼耦合系统的前飞状态下的回转颤振特性 进行研究分析,系统主要参数见表2。如图5所示, 在张开机翼前缘上布置多个旋翼,分析旋翼数量 $(n_1, n_2, n_3$ 表示有1、2、3个旋翼)、升力桨收放(用 n₂₇、n₃₇表示桨叶张开)、旋翼短舱质量和高度、桨叶 总距和旋翼转速、机翼倾转中心位置和刚度等参数 对耦合系统气弹动特性特别是系统回转颤振特性 的影响规律。

Table 2 Main parameters of the	semi-span system			
旋翼				
桨毂构型	无铰式			
半径 R/m	0.5			
旋翼片数	4			
额定转速/(r•min ⁻¹)	2 700			
推进桨一阶挥舞频率 β_1/Hz	61.25			
升力桨一阶挥舞频率 $eta_1^{s}/ ext{Hz}$	77.3			
旋翼短舱				
质量 $m_{\rm p}/{ m kg}$	3.4			
短舱高度 h/m	0.45			
机翼				
半展长 R_w/m	4			
翼尖弦长/m	0.528			
翼根弦长/m	0.752			

表2 半展系统主要参数

将桨叶6°总距、机翼3°迎角作为初始状态,在 保证旋翼拉力一定的情况下,分析不同前飞速度下 n₁系统气弹稳定性。系统模态阻尼、频率振型如图 6所示。由图6可以得出:(1)随着速度逐渐增加, 机翼一、二阶面外弯曲模态q1和q3的频率和阻尼均 逐渐增加,而面内弯曲和扭转模态 q2、p1的频率和 阻尼逐渐降低;(2)随着速度增加,q₃和p₁频率渐渐

图 5 分布式推进旋翼飞行器半展系统

Fig.5 Semi-span system of the distributed propulsion rotorcraft

统发生扭转颤振失稳,且由图 6(b)可知此时机翼 面、内外弯曲模态和扭转模态的耦合程度均在增 加,随速度继续增加, q_1 和 q_2 频率也渐渐接近,到 151 m/s时 q_2 阻尼也转为负,系统同时出现面内外 弯曲失稳;(3)推进桨桨叶挥舞频率(集合型 β_1 、无 反作用型 β_0 、前进型 β_{+1} 和后退型 β_{-1})均随速度增 加先减后增,而其模态阻尼则均是先增后减。

在低速(小于60 m/s)时,升力桨张开可提供 一部分向前飞行的动力,当速度逐渐提高,升力桨 拉力减小甚至变为负拉力,此时可将升力桨收起以 减少向前飞行的阻力。分析可知:p1模态阻尼对升 力桨收放和旋翼数量极为敏感,p1阻尼随速度变化 趋势如图7所示,通过提高旋翼数量并张开升力桨 (n2z、n3z)能显著提高p1模态阻尼,这是因为旋翼数 量的提高使得机翼上载荷和质量分布更加均匀,同 时扩大了滑流区范围,大大增加了系统气弹稳定 性,但提高速度会相应地减小升力桨拉力,滑溜区 气流受尾流加速影响被削弱,使得升力桨的增稳作 用也随之减弱,p1模态阻尼也随之减小。

ment/retraction of the lift rotors on the first-order torsional mode damping of wing

系统颤振速度随推力桨挥舞刚度变化趋势如 图8所示,因为飞行器采用分布式多旋翼构型,每

图 8 系统颤振速度随桨叶挥舞刚度变化

Fig.8 Variation of the system flutter speed with the flapping stiffness of the blades

个旋翼直径不大且旋翼振动载荷也比较低,因此旋 翼采用无铰式桨毂构型,这使得推力桨挥舞频率β₁ 较大,造成推力桨挥舞后退型β₋₁和q₁、q₂频率相隔 较远,所以相比倾转旋翼构型,多桨构型的β₋₁和 q₁、q₂间模态耦合程度较低,使得系统颤振速度受 推力桨挥舞刚度影响较小。

系统颤振速度随桨叶总距变化趋势如图9(a) 所示,系统颤振速度随总距提高也随之提高,这是 由于总距提高旋翼拉力也一起增大,进而提高了旋 翼尾流增稳作用,说明旋翼带动力工作能提高系统 稳定性;但当旋翼数量增加,提高桨叶总距的增稳 作用也会随之减小;n₁系统的颤振失稳模式为q₂模 态失稳,而n₂和n₃为q₁模态失稳。系统颤振速度随 旋翼转速变化趋势如图9(b)所示,颤振速度随转 速提高反而降低,说明转速增加反而更易造成系统 失稳,此时n₁系统的颤振失稳模式仍为q₂模态失 稳,n₂和n₃仍为q₁模态失稳。

系统颤振特性随机翼刚度变化趋势如图 10~ 12 所示。由图可知:(1)对系统临界颤振速度影响 程度最大的是机翼扭转刚度,其余依次是面外以及 面内弯曲刚度。(2)当机翼面外弯曲刚度比为 1.3 时(刚度比处于 1.1~1.5 范围内),如图 11(a,b)所

示,此时由于面外弯曲刚度增加q₃频率随之增加, q3与p1频率更加靠近更易发生模态耦合,使得系统 提前出现 q3与p1耦合造成的扭转失稳现象,系统颤 振速度也随之降低(110 m/s),为此应尽可能将 q_3 、 p1两者频率拉开以避免其出现模态耦合,从而增加 系统颤振速度;随着速度持续提高,q1、q2频率逐渐 靠近,发生模态耦合,系统开始发生面内弯曲失稳 (151 m/s),且当 q_3 频率随 q_2 一起下降直至与 p_1 频 率相远离时,q3与p1耦合造成的扭转失稳也随之消 失,系统此时仅出现面内弯曲失稳现象。(3)当机翼 面外弯曲刚度比提高至1.5以上时,机翼三维耦合 效应会因为机翼刚度太高而大大削弱,q₃与p₁频率 相距太远很难发生耦合,系统反而会先发生面内弯 曲失稳,造成颤振速度呈现出阶跃性提高;同样,当 机翼面内弯曲刚度比提高到1.6以上时,系统一样 先发生面内弯曲失稳,进而颤振速度呈现类似的阶 跃性提高。(4)当扭转扭转刚度比减小到0.6以下 时,如图11(c,d)和图12所示,当系统发生颤振时, q₁模态主振型下的面内和扭转振型都很大,机翼出 现面内、外和扭转模态同时耦合现象,机翼运动的 三维耦合效应明显加剧,且面内、外弯曲模态更易 耦合,使得q1、q2频率更易靠近,造成q3频率随q2一 起下降并与p,远离,系统先出现面内弯曲失稳。

基准参数下不同旋翼和短舱高度的颤振速度 影响如图 13 所示,由于n₂和n₃系统模态p₁频率相 较于n₁更低,系统更易发生q₃和p₁耦合的扭转失 稳,而由于n₁系统p₁频率较高,则发生的是q₁、q₂耦 合的面内弯曲失稳,随着高度增加系统重心向前缘 移动,造成p₁频率降低,系统颤振稳定性一同减小; 但当n₂和n₃系统短舱高度大于0.65倍基准舱高度 时,由于短舱惯量载荷和旋翼的气动和惯性力矩增 大,机翼扭转变形增大,进而造成机翼面外和面内 形变也随之增大,机翼面内、外和扭转模态三维耦 合效应增大,使得系统反而先发生面内、外模态耦

合的颤振失稳,而由于面内、外模态耦合的失稳临 界颤振速度更大,使得系统临界颤振速度出现了阶 跃增加,造成临界颤振速度出现阶跃增加后再 减小。

Fig.12 Out-of-plane bending vibration modes of the wing

under different stiffnesses

图13 系统颤振速度随旋翼和短舱高度变化

Fig.13 Variation of the system flutter speed with the height of the rotors and nacelles

3 结 论

针对分布式推进旋翼飞行器高速前飞状态下 分布式多旋翼与倾转机翼间存在的复杂气动/弹 性/惯性耦合现象,以及其引起的回转颤振问题,本 文提出了一种适用于分布式多旋翼/倾转机翼耦合 系统的气弹动力学分析方法,研究旋翼/短舱/机翼 等部件的动力学参数对系统临界颤振速度的影响 规律,并得到以下结论:

(1)随着速度增加,机翼一、二阶面外弯曲模态q1和q3的频率和阻尼均逐渐增加,而面内弯曲和 扭转模态q2、p1的频率和阻尼逐渐降低;随着速度 增加,学习先发生二阶垂向弯曲q3和一阶扭转p1耦 合的扭转颤振失稳,后发生一阶垂向弯曲q1和一阶 弦向弯曲q1耦合的面内颤振失稳,桨叶挥舞均随速 度增加先减后增,而其模态阻尼则均先增后减。

(2)增加旋翼数量并张开升力桨能扩大滑流 区范围,从而显著提高机翼扭转模态p1阻尼;无铰 式桨载构型旋翼桨叶挥舞刚度较大,使得系统颤振 速度受推力桨挥舞刚度影响较小;随着桨叶总距增 加,旋翼拉力提高,旋翼尾流增稳作用显著提高,进 而提高系统稳定性;但当旋翼数量增加,提高桨叶 总距的增稳作用也会随之减小;转速增加反而更易 造成系统失稳,使系统回转颤振稳定性下降。

(3) 对系统临界颤振速度影响程度最大的是 机翼扭转刚度,其余依次是面外以及面内弯曲刚 度;当增大面外弯曲刚度时,会先让q₃与p₁频率更 易靠近发生扭转失稳,使得颤振速度降低;但当面 外和面内刚度过大时三维效应减弱,系统会先发生 面内弯曲失稳,颤振速度出现阶跃增加;当扭转刚 度较小时,机翼发生面内、外弯曲和扭转模态耦合, 三维耦合效应显著,系统先发生面内弯曲失稳,随 着刚度增大,三维效应减弱,系统由面内弯曲失稳 变为扭转失稳,颤振速度先减小后变大。

(4)增加短舱高度质心前移,扭转频率降低, 更易发生扭转失稳,颤振速度随之降低;但当高度 过大时,n2和n3系统机翼三维耦合效应显著,系统 先发生面内弯曲失稳,故颤振速度阶跃增加后再 减小。

参考文献:

- [1] MURPHY P C, HATKE D B, AUBUCHON V V, et al. Preliminary steps in developing rapid aero modeling technology[C]//Proceedings of the AIAA Sci-Tech 2020 Forum. [S.I.]: AIAA, 2020.
- [2] MURPHY P C, SIMMONS B M, HATKE D B. Rapid aero modeling for urban air mobility aircraft in wind-tunnel tests[C]//Proceedings of the AIAA Sci-Tech 2021 Forum. [S.I.]: AIAA, 2021.
- [3] BORER N K, PATTERSON M D, VIKEN J K. Design and performance of the NASA sceptor distributed electric propulsion flight demonstrator[J]. AIAA Journal, 2016, 30(1): 3920-3939.
- [4] PATTERSON M D, DASKILEWICZ M J, GER-MAN B J. Conceptual design of electric aircraft with distributed propellers: Multidisciplinary analysis needs and aerodynamic modeling development[C]//Proceedings of the 52nd Aerospace Sciences Meeting. National Harbor, Maryland: AIAA, 2014.
- [5] DROANDI G, ZANOTTI A, GIBERTINI G. Experimental investigation of the rotor-wing aerodynamic interaction in a tiltwing aircraft in hover[J]. Aeronautical Journal, 2015, 119(1215): 591-612.
- [6] MISIOROWSKI M, GANDHI F, ANUSONTI IN-THRA P. Computational analysis of rotor-blown-wing for electric rotorcraft applications[J]. AIAA Journal, 2020, 58(5): 1-12.
- [7] DAVID G P, PATRICIA V D, JASIM A. A comparison of rotor disk modeling and blade-resolved CFD simulations for NASA's tiltwing air taxi[C]//Pro-

ceedings of the Vertical Flight Society's 79th Annual Forum & Technology Display. West Palm Beach, FL: The Vertical Flight Society, 2023.

- [8] JOHNSON W, SILVA C. NASA concept vehicles and the engineering of advanced air mobility aircraft[J]. The Aeronautical Journal, 2022, 126(1295): 59-91.
- [9] HARTMANN P, MEYER C, MOORMANN D. Unified approach for velocity control and flight state process of unmanned tiltwing aircraft[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. [S.l.]: AIAA, 2016.
- [10] CHAUHAN S S, MARTINS J R. Tilt-wing eVTOL takeoff trajectory optimization[J]. Journal of Aircraft, 2019, 57(1): 1-20.
- [11] SETTLE T B, KIDD D L. Evolution and test history of the V-22 0.2-scale aeroelastic model[C]//Proceedings of the American Helicopter Society National Specialists' Meeting on Rotorcraft Dynamics. Arlington, Texas: AHS, 1989.
- [12] SLABY J, SMITH E. Aeroelastic stability of folding tiltrotor aircraftin cruise flight with composite wings [C]//Proceedings of the 52nd AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference. [S.I.]: AIAA, 2011.
- [13] NOLL T E, BROWN J M, PEREZ M E. Investigation of the helios prototype aircraft mishap[R]. [S.l.]: NASA, 2004.
- [14] 杨龙.大展弦比太阳能无人机结构动力学研究[D]. 长沙:国防科学技术大学,2013.
 YANG Long. Study on structural dynamic of high aspect ratio solar unmanned aerial vehicle[D]. Changsha: National University of Defense Technology, 2013.
- [15] ROTHHAAR P M, MURPHY P C, BACON B J. NASA langley distributed propulsion VTOL tilt-wing aircraft testing, modeling, simulation, control, and flight test development[C]//Proceedings of the AIAA Aviation Technology, Integration and Opera-

tions Conference. [S.l.]: AIAA, 2014.

- [16] MURPHY P C. Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing [C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Kissimmee, Florida: AIAA, 2015.
- [17] GEUTHER S C, NORTH D D, BUSAN R C. Investigation of a tandem tilt-wing VTOL aircraft in the NASA Langley 12-Foot Low-Speed Tunnel: NASA-TM-2020-5003178[R].[S.l.]:NASA, 2020.
- [18] SIMMONS B M, MURPHY P C. Aero-propulsive modeling for tilt-wing, distributed propulsion aircraft using wind tunnel data[J]. Journal of Aircraft, 2022, 59(9): 1-17.
- [19] DEDE S T, TATAR A, REZGUI D, et al. Aeroelastic analysis of distributed electric propulsion flexible wings[C]//Proceedings of the International Forum on Aeroelasticity and Structural Dynamics. Hague, Netherlands: [s.n.], 2024.
- [20] STOLL A, MIKIÉ G V. Transition performance of tilt propeller aicraft[C]//Proceedings of the Vertical Flight Society's 78th Annual Forum and Technology Display. Ft. Worth, Texas, USA: [s.n.], 2022.
- [21] LIU J F, MA D L, LUO J. Wind-tunnel testing on tilting flight mode characteristics of a small distributed propulsion VTOL tilt-wing aircraft[J]. Helicopter Technique, 2023, 215(1):29-33.
- [22] 付志超,陈占军,刘子强.大展弦比机翼气动弹性的 几何非线性效应[J].工程力学,2017,34(4): 231-240.
 FU Zhichao, CHEN Zhanjun, LIU Ziqiang. Geometric nonlinear aeroelastic behavior of high aspect ratio wings[J]. Engineering Mechanics, 2017, 34(4): 231-240.
- [23] ACREE C W, PEYRAN R J. Rotor design options for improving XV-15 whirl-flutter stability margins: NASA TP-2004-212262[R]. California: AMES Research Center, 2004.

(编辑:孙静)