DOI:10.16356/j.1005-2615.2024.03.007

第56卷第3期

2024 年 6 月

京

南

飞机典型结构当量初始缺陷尺寸分布模型研究

冯浩凌1,许希武2,古兴瑾2,俞晓楠1

(1.南京航空航天大学航空学院,南京 210016: 2. 南京航空航天大学航空航天结构力学及控制全国重点实验室,南京 210016)

摘要:利用结构耐久性分析技术可以在保证飞机结构可靠性的同时,有效提高飞机结构的经济性。应用结构耐 久性分析技术,对某型飞机飞行载荷谱作用下一种7B04-T651高强铝合金典型疲劳结构的原始疲劳质量(Initial fatigue qualit, IFQ)进行了研究。开展了3级不同应力水平下的飞行载荷谱疲劳试验研究;利用极大似然估计法 处理基于三参数 Weibull 分布的裂纹萌生时间分布的参数估计问题,利用蒙特卡罗法对比验证了该方法的正确 性,提出使用对数样本矩处理当量初始缺陷尺寸(Equivalent initial flaw size, EIFS)分布以获取通用当量初始缺 陷尺寸分布模型;建立描述该典型结构的原始疲劳质量模型,验证其当量初始缺陷尺寸小于许用规定的0.125 mm;最后通过对该典型结构的原始疲劳质量分析,验证了通用化方法的正确性和实用性,并且建立了结构在不 同应力区、不同指定裂纹尺寸和不同可靠度下的寿命估计模型。

关键词:原始疲劳质量;裂纹萌生时间;当量初始缺陷尺寸;极大似然估计;铝合金 中图分类号:V215.5 文献标志码:A **文章编号:**1005-2615(2024)03-0438-09

An Equivalent Initial Flaw Size Distribution Model of Typical Aircraft **Structures**

FENG Haoling¹, XU Xiwu², GU Xingjin², YU Xiaonan¹

(1. College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China; 2. State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China)

Abstract: The use of structural durability analysis technology can effectively improve the economic efficiency of aircraft structures while ensuring their reliability. This paper utilizes the structural durability analysis technique to study the initial fatigue quality (IFQ) of a typical fatigue structure of 7B04-T651 high-strength aluminum alloy under the action of flight load spectrum of a certain type of aircraft. Firstly, the maximum likelihood estimation method is applied to the parameter estimation problem of crack initiation time distribution based on three-parameter Weibull distribution. The Monte Carlo method is used to verify the correctness of this approach. Secondly, fatigue tests under three different stress levels are carried out on the flight load spectrum. The logarithmic sample moment approach is proposed to process the equivalent initial flaw size distribution to obtain its general model. In addition, the initial fatigue quality model describing the typical structure is established, which verifies that the equivalent initial flaw size (EIFS) is less than the allowable 0.125 mm. By analyzing the initial fatigue quality of the typical structure, the correctness and practicability of the generalization method is demonstrated, and the life estimation model of this typical structure is built under different stress zones, different specified crack sizes and different reliability levels.

收稿日期:2023-10-11;修订日期:2024-03-26

通信作者:许希武,男,教授,博士生导师,E-mail:xwxu@nuaa.edu.cn。

引用格式:冯浩凌,许希武,古兴瑾,等.飞机典型结构当量初始缺陷尺寸分布模型研究[J].南京航空航天大学学报, 2024, 56(3): 438-446. FENG Haoling, XU Xiwu, GU Xingjin, et al. An equivalent initial flaw size distribution model of typical aircraft structures [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2024, 56(3):438-446.

Key words: initial fatigue quality; time to crack initial; equivalent initial flaw size; maximum likelihood estimation; aluminum alloy

飞机结构必须在使用寿命期间内具有高安全 性和高可靠性。如何延长飞机使用寿命、降低维修 和使用成本,一直是航空业关注的重点[1-3]。对飞 机结构中易发生疲劳破坏的关键结构而言,其结构 寿命反映了全机寿命。近年来,概率损伤容限设计 应用在飞机结构的寿命估计和可靠性分析中[45]。 按照安全寿命准则,结构的使用寿命一旦达到安全 寿命,整个结构细节群的寿命均已终止,这使得用 安全寿命来评价整体寿命变得不经济。然而结构 耐久性分析技术将安全寿命替换为经济寿命,允许 结构进行经济修理后继续使用,只有当修理行为不 再经济时,结构寿命才终止。结构耐久性分析技术 作为概率损伤容限设计中重要的一部分,使用当量 裂纹扩展概念研究裂纹尺寸分布随使用时间扩展 的随机过程,利用当量初始缺陷尺寸(Equivalent initial flaw size, EIFS)分布来描述结构微、细观缺 陷以表征结构的原始疲劳质量(Initial fatigue qualit, IFQ)。获取更贴近实际情况的通用 EIFS 分 布,从而使飞机具有高安全性和高可靠性的同时, 拥有更为经济的结构构成,这需要开展大量的研究 工作。

为了表征结构的IFQ问题,Yang^[6]提出EIFS 概念。满足通用性条件的EIFS分布只依赖于材 料特性、几何参数、载荷谱形式、加工制造装配过程 引起的初始缺陷等因素,与应力水平无关^[7]。EI-FS作为一个统计值,可以描述结构初始加工状 态^[8]。而通用性EIFS分布能够表征结构细节群的 寿命分布情况,通过对飞机关键结构进行监测、检 修等方法获取结构裂纹萌生寿命作为通用性EIFS 分析输入值,随即获取结构剩余寿命的估计和维修 后的寿命预测,给飞机结构细节群寿命分析提供统 计学指导。

计算结构的 EIFS 分布通常包括拟合法、反推 法、K-T 图法和裂纹萌生时间(Time to crack initiation, TTCI)反推法。拟合法^[9-12]通过求解经验累 积概率与拟合累计概率的偏差平方和最小值,应用 试验(*a*, *t*)数据直接拟合出 EIFS 分布,求解速度 快,但结果较为粗糙,不能准确评估结构疲劳质 量。反推法基于宏观断裂力学,应用裂纹扩展速率 函数积分反推 EIFS 值,其中使用的裂纹驱动力包 括应力强度因子、净截面应变能^[13-14]等,在等幅载 荷谱作用下的预测较为准确。K-T 图法^[15-17]以断 裂力学为基础,寻找应力强度因子、加载应力幅值 与加载循环次数之间的关系,从而求出结构 EIFS 值,然而其过于依赖载荷幅值,在复杂载荷谱问题 中表现不佳。TTCI反推法^[18]通过裂纹萌生时间 (寿命)裂纹萌生时间分布反推获取当量初始缺陷 尺寸EIFS分布,适用于工程上飞行谱载荷寿命估 计,常用双参数Weibull分布描述TTCI随机变量, 双参数Weibull分布计算简单,但其分布是从寿命 为0开始,并不符合实际情况。三参数Weibull分 布拥有约束分布下限的位置参数,适用于描述飞机 结构细节群的疲劳寿命。

在三参数 Weilbull 分布的 TTCI 分布参数求 解方面,曲延碌等^[19]、杨谋存等^[20]应用降阶思想处 理极大似然方程组的方法仍需更多的工作。在此 背景下,通过3组不同应力水平的谱载荷疲劳试验 获取飞机结构细节群原始疲劳数据集,重新推导并 完善基于三参数 Weibull 分布的 TTCI 分布反推通 用 EIFS 分布方法,提出用对数样本矩代替均秩估 计法求解通用 EIFS 分布参数,利用蒙特卡罗法验 证该方法的有效性和特点;最终给出结构在不同应 力区、不同可靠度和不同指定裂纹尺寸下的寿命 估计。

通用当量初始缺陷尺寸分布模型 分析方法

1.1 TTCI分布反推法

要获得能够表征结构 IFQ 的通用 EIFS 分布, 通常要将所有试件分为不同应力水平的 3 组进行 疲劳试验,获得试验[(*a_k*,*t_k*)_{*j*}],数据,其中角标的含 义为第*i*组应力水平下的第*j*件试验件的*k*对裂纹 扩展数据。选定指定裂纹尺寸*a_r*,可以获得*i*个 TTCI分布,利用 TTCI反推法可以求出通用性 EI-FS 分布以描述结构 IFQ 问题。

裂纹尺寸a与时间t的一般关系为

 $a(t_1) = a(t_2) \exp\left[-Q(t_2 - t_1)\right]$ (1)

式中Q为裂纹扩展参数。取随机变量X表征 EIFS 分布,随机变量T表征 TTCI分布,在式(1)中,令 $t_1=0, t_2=T, a(t_2)=a_r$,可以得到

$$X = a(0) = a_r \exp(-QT) \tag{2}$$

求出TTCI分布即可获得对应的EIFS分布, 经过通用化处理后可以获得表征结构原始疲劳质 量的通用EIFS分布。

1.2 TTCI分布及参数估计

TTCI是结构细节在给定载荷谱作用下达到 某一参考裂纹尺寸 a, 所经历的时间, 使用三参数 Weibull分布描述TTCI分布时,其位置参数 ϵ 代表 了分布下限,用 t表示 T的取值,其概率密度函数 $f_{\tau}(t)$ 表达式为

$$f_{T}(t) = \frac{\alpha}{\beta} \left(\frac{t - \varepsilon}{\beta} \right)^{\alpha - 1} \exp \left[- \left(\frac{t - \varepsilon}{\beta} \right)^{\alpha} \right] \quad t \ge \varepsilon \quad (3)$$

式中:α为形状参数,β为比例参数,ε为位置参数。

相比于其他参数求解方法,极大似然估计法求 解三参数Weibull分布拥有更高的精度,其基本思 想是选择待定参数使样本出现在观测值的领域内 的概率最大,并以这个值作为未知参数的点估计值。三参数Weibull分布的对数似然函数L为

$$\ln L = n \ln \alpha - n\alpha \ln \beta + (\alpha - 1) \sum_{i=1}^{n} \ln(t_i - \varepsilon) - \sum_{i=1}^{n} \left(\frac{t_i - \varepsilon}{\beta} \right)^{\alpha}$$
(4)

根据极大似然估计的定义,当某组参数满足似 然函数取极大值时,极大似然估计法成立,该组参 数为该点的最佳估计,即满足方程组

$$\frac{\partial \ln L}{\partial \alpha} = \frac{n}{\alpha} - n \ln \beta + \sum_{i=1}^{n} \ln(t_i - \varepsilon) - \sum_{i=1}^{n} \left[\left(\frac{t_i - \varepsilon}{\beta} \right)^{\alpha} \ln \left(\frac{t_i - \varepsilon}{\beta} \right) \right] = 0$$

$$\frac{\partial \ln L}{\partial \beta} = -\frac{n\alpha}{\beta} + \frac{\alpha}{\beta^{\alpha+1}} \sum_{i=1}^{n} (t_i - \varepsilon)^{\alpha} = 0$$

$$\frac{\partial \ln L}{\partial \varepsilon} = (1 - \alpha) \sum_{i=1}^{n} (t_i - \varepsilon)^{-1} + \frac{\alpha}{\beta^{\alpha}} \sum_{i=1}^{n} (t_i - \varepsilon)^{\alpha-1} = 0$$
(5)

采用降阶的数值解法对式(5)进行处理。假定 已知形状参数α,消去方程组中的比例参数β,形成 一个参数α和ε的二维最优化极值问题。

$$\min f(\alpha, \varepsilon) = (1 - \alpha) \sum_{i=1}^{n} (t_i - \varepsilon)^{-1} + n\alpha \left[\sum_{i=1}^{n} (t_i - \varepsilon)^{\alpha} \right]^{-1} \sum_{i=1}^{n} (t_i - \varepsilon)^{\alpha-1} = 0$$
(6)

同时,β为

$$\beta = \sqrt[a]{\frac{1}{n} \sum_{i=1}^{n} (t_i - \varepsilon)^{\alpha}}$$
(7)

使用线搜索法则以降低问题的复杂度。依据 试验(a, t)数据利用幂函数拟合求出对应的TTCI 分布原始数据 (a_r, t_r) ,同时, α 的初值可以通过进 退法选取,在 ϵ 的线搜索中计算加入 α 的假定值以 完成对 ϵ 的优化求解。此外, f_L 和 f_R 可以由式(8) 计算。

$$\begin{cases} f_{\rm L}(\alpha_{\rm L},\beta_{\rm L},\epsilon_{\rm L}) = \left| \frac{\partial \ln L}{\partial \alpha_{\rm L}} \right| \\ f_{\rm R}(\alpha_{\rm R},\beta_{\rm R},\epsilon_{\rm R}) = \left| \frac{\partial \ln L}{\partial \alpha_{\rm R}} \right| \end{cases}$$
(8)

满足极大似然条件的一组解(α,β,ε)即为此最 优化问题的解。若出现极大似然法无解的情况,通 常是试验件数过少导致。处理方式为添加试验件 数直至极大似然有解,或者退为使用相关系数 法^[21]或概率加权矩法^[22]获得近似解,但是其他方 法也仍有可能出现无解的情况。

1.3 通用当量初始缺陷尺寸分布

EIFS分布可以直接通过各组应力水平的TT-CI分布代入到式(2)获得,但依据此方法获取的 EIFS分布与应力有关,需要进行通用化获取通用 EIFS分布才能够描述结构 IFQ问题。用随机变量 X描述的非通用 EIFS分布为

$$F_{Xi}(x) = \exp\left[-\left(\frac{\ln x_{ui} - \ln x}{Q_i \beta_i}\right)^{\alpha_i}\right] \qquad (9)$$

式中xui为EIFS分布的上界,其满足

$$x_{\rm ui} = a_{\rm r} \exp(-Q_i \varepsilon_i) \tag{10}$$

各组应力水平的裂纹扩展参数 Q_i由式(11) 计算。

$$Q_i = \frac{1}{n} \sum_{j=1}^n Q_{ij} \tag{11}$$

式中第*i*组第*j*件试验件的裂纹扩展参数*Q_{ij}*可以利用(*a_{ijk}, t_{ijk}*)数据通过最小二乘拟合式(12)获取。

$$Q_{ij} = \frac{\sum_{k=1}^{N} t_{ijk} \ln a_{ijk} - \left(\sum_{k=1}^{N} t_{ijk}\right) \left(\sum_{k=1}^{N} \ln a_{ijk}\right)}{N \sum_{k=1}^{N} t_{ijk}^{2} - \left(\sum_{k=1}^{N} t_{ijk}\right)^{2}} \quad (12)$$

通过式(10~12)可以求出不同组 TTCI_i分布 反推出的 EIFS_i分布参数,对其进行通用化处理后 求出通用 EIFS 分布参数,将通用 EIFS 分布参数 加上标为 $(\hat{x}_u, \widehat{Q\beta}, \hat{a})$ 以区分各应力水平组下的 EIFS_i分布参数,通用性条件为

$$\begin{cases} x_{u1} = x_{u2} = \cdots = x_{ui} = \hat{x}_{u} \\ Q_1 \beta_1 = Q_2 \beta_2 = \cdots = Q_i \beta_i = \widehat{Q\beta} \\ \alpha_1 = \alpha_2 = \cdots = \alpha_i = \hat{\alpha} \end{cases}$$
(13)

通用性参数 $(\hat{x}_u, \widehat{Q\beta}, \hat{\alpha})$ 可以通过通用性条件 方程组(13)分别应用对数样本矩和非对数样本矩 进行估计。

$$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \alpha_i \tag{14}$$

702 315.441 3.

$$\hat{x}_{u} = \exp\left(\ln a_{r} - \frac{1}{n} \sum_{i=1}^{n} Q_{i} \varepsilon_{i}\right)$$
(15)

$$\widehat{Q\beta} = \frac{1}{n} \ln \left(\frac{a_r}{\widehat{x}_u} \right) \left(\sum_{i=1}^n \frac{\beta_i}{\varepsilon_i} \right)$$
(16)

通过式(14~16)即可将 EIFS,分布通用化为能 够描述结构 IFQ 问题的通用 EIFS 分布。相比于 均秩估计法使用经验函数进行累计概率估计,其依 赖于经验函数形式,使用样本矩估计 EIFS 分布参 数更加合理,且计算简单,更适合工程应用。极大 似然估计法和矩估计的通用方法获取通用 EIFS 分布参数的具体流程如图1所示。

图1 应用极大似然估计法和矩估计法获取通用EIFS分 布参数的方法

Fig.1 Algorithm for obtaining parameters of general EIFS distribution by the MLE method and the moment estimation

1.4 模型对比验证

使用蒙特卡罗^[23]模拟产生样本,分别采用极 大似然估计法(Maximum likelihood estimation, MLE)、概率加权矩法(Probability weighted, PW) 和经验函数为平均秩公式的相关系数法(Correlation coefficient, CC)估计分布参数,与准确的参数 值进行比较。选取分布参数(α , β , ε) = (2, 321 148, 200 000)的三参数Weibull分布,随机生 成3组随机样本寿命R₁、R₂、R₃,各个随机样本寿命 个数分别为20、7和7个,样本具体如下。

 $\begin{array}{l} R_1:\ 285\ 311.6,\ 309\ 046.0,\ 341\ 582.0,\ 356\ 311.4,\\ 356\ 455.8,\ 417\ 522.9,\ 432\ 496.2,\ 437\ 439.8,\\ \end{array}$

440 700.5, 471 651.4, 503 653.1, 514 376.1, 519 791.3, 555 394.8, 589 116.8, 632 686.6, 672 872.3, 675 454.1, 733 704.4, 782 894.9 $_{\circ}$ R₂: 330 472.317 2, 429 209.849 8, 453 821.598 3, 486 084.992 7, 531 127.317 2, 695 767.367 8,

 $\begin{array}{l} R_3: 242 \ 386.229 \ 6, \ 369 \ 111.236 \ 3, \ 374 \ 179.867 \ 1, \\ 542 \ 568.239 \ 7, \ 545 \ 853.202 \ 2, \ 610 \ 312.565 \ 5, \\ 835 \ 475.547 \ 4_{\circ} \end{array}$

表1给出了3种方法的计算结果,可以看出极 大似然法拥有最大的对数似然函数值。设定 20%、50%和80%的累计分布概率作为对比,样本 母体的3种不同累计分布概率对应的真实寿命值 分别为267650.9、484697.9、607419.9。

表1 各方法分布参数和对数极大似然值 Table 1 Each method distributed parameters and logarithmic maximum likelihood values

样本	方法	α	β	ε	$\ln L$
R ₁	MLE	1.698 9	265 358	263 970	-264.1860
	\mathbf{PW}	2.032 0	327 932	210 877	-264.5883
	CC	$1.778\ 5$	317 665	225 118	-264.8226
R_2	MLE	1.7334	246 416	298 097	-91.8661
	\mathbf{PW}	2.089 6	328 688	227 273	-92.1396
	CC	1.990 6	373 797	197 693	-92.6294
R ₃	MLE	1.258 5	234 223	361 326	-94.2366
	\mathbf{PW}	2.468 3	456 025	177 185	-94.5733
	CC	2.025 8	487 098	166 173	-95.0186

3种方法的寿命估计值 T_{estimate} 与真实寿命值 T_{real}的误差 E 为

$$E = \left| \left(T_{\text{estimate}} - T_{\text{real}} \right) / T_{\text{real}} \right| \times 100\% \quad (17)$$

表2给出了3种方法各个样本的误差结果,可 以得出极大似然估计法在80%寿命估计误差结果 在3种样本中均为最小,分别为1.27%、2.46%、 6.81%,在小样本估计中也有优秀表现,例如样本 R₂和样本 R₃。在飞机结构寿命分析中,更倾向于

表2 各方法误差结果					
	Table 2Error results of each method%				
样本	方法	20% 寿命	50%寿命	80%寿命	
R_1	MLE	6.26	2.24	1.27	
	\mathbf{PW}	4.53	3.70	2.95	
	CC	4.79	2.70	3.16	
R_2	MLE	14.25	6.46	2.46	
	PW	10.21	7.64	5.37	
	CC	13.59	21.7	33.03	
R_3	MLE	4.44	0.26	6.81	
	PW	9.3	3.61	11.16	
	CC	14.86	4.52	18.42	

获取对总体大范围(80%以上)的估计,而极大似 然估计法在80%的总体估计值的误差最小,显示 其估计总体方面更精准的优点。

2 试验方法

疲劳试验于南京航空航天大学航空航天结构 力学与控制全国重点实验室的MTS810.25疲劳试 验机上进行。试验件材料为7B04-T651高强度铝 合金,试验件几何尺寸如图2所示,载荷谱的施加 由MTS液压伺服机实现。

试验环境为正常大气环境,疲劳载荷加载速率为200 kN/s,控制加载峰值误差小于峰值的0.1%。 试验过程中使用精度为0.001 mm的动态裂纹观测 显微镜观察紧固孔裂纹细节,详细记录裂纹萌生位 置、裂纹长度及循环数,疲劳试验结束后,使用 KH-7700型体式显微镜采集试验件断口情况。试 验平台及现场如图3所示。

图 3 试验平台 Fig.3 Test platform

为了最大限度保存原载荷谱的完整性和加载 顺序,裂纹长度和对应循环数(a,N)数据由动态裂 纹观测显微镜测量给出,以断口显微图像作为辅助 测量定位。在试验件裂纹表面附近粘贴透明菲林 尺作为标定工具,在试验进行中进行实时测量记 录,如图4所示。

图 4 动态裂纹显微镜作业过程 Fig.4 Dynamic crack observation microscope process

单个试验载荷谱块的循环次数为3381,代表 168.833飞行小时。为了保证试验情况最大可能地 模拟飞机服役期间的复杂受载情况,在试验加载谱 中不对原有飞行载荷谱进行任何修改。试验载荷 谱P表达式为

$$P = AQn_{y} \tag{18}$$

式中:Q为1g过载下应力水平,A为试验件的净截 面面积,n_y为飞行载荷谱。生成的试验载荷谱如图 5所示。为建立描述结构IFQ问题的EIFS分布模 型,试验采用3组应力水平,每组应力水平使用试 验载荷谱中最大应力峰值表示,如表3所示。

表 3 典型结构的试验应力水平

Table 3 Test stress levels for typical structures

编组	А	В	С
应力水平/MPa	149.400 01	157.971 23	165.338 25

3 试验结果与寿命模型分析

3.1 试验结果

将试验记录的裂纹长度和对应循环数(*a*, *N*) 数据与对应飞机科目进行转换,获得裂纹长度和寿 命(*a*,*t*)数据,各组应力水平(A, B, C)的(*a*, *t*)数 据分别如图 6、7和 8 所示。

图6 低应力水平A组(a, t)数据

Fig.7 (a, t) data of group B of medium stress level

Fig.8 (a, t) data of group C of high stress level

3.2 TTCI分布

寿命t和裂纹长度a满足一般裂纹关系

$$\ln a = \ln C_2 + C_1 t \tag{19}$$

$$a = C_3 t + C_4 \tag{20}$$

式中*C*₁、*C*₂、*C*₃和*C*₄为拟合参数,通过最小二乘法获取。

将所有(a, t)数据应用式(19, 20)进行拟合, 获取各组TTCI分布求解的输入参数 $[(a_r, t_r)_k]_j$, 取 $a_r=1$ mm。使用拟合优度 R^2 值来评价拟合程 度的优劣,从而表现 (a_r, t_r) 数据的可靠与准确,选 取 R^2 更大的拟合曲线作为拟合插值结果来源。 R^2 的值越接近1,说明回归直线对观测值的拟合程 度越好; R²的值越小, 说明回归直线对观测值的拟 合程度越差。通常来说, R²值需要大于0.75。该 典型结构试验数据的拟合优度 R²值如图9所示。 所有的 R²均大于0.95, 证明该典型结构试验数据 十分贴近拟合曲线, 拟合效果好, 从而反映本文所 使用的拟合方法的正确性与准确性。

Fig.9 Goodness of fit value R^2 for typical structural (a_r, t_r) data

$$R(t) = 1 - F_{\rm T}(t) \tag{21}$$

以式(21)描述可靠度函数R,其中, F_{T} 为TT-CI分布的累计概率密度函数,通过1.2节所述TT-CI分布求解方法求得TTCI分布参数及极大似然函数值的结果如表4所示。

表 4 TTCI分布参数 Table 4 TTCI distribution parameters

组编	α	β	ε	$\ln L$
А	1.559 3	4 990.8	8 190.9	-65.0367
В	$1.508\ 5$	4 129.1	8 176.3	-54.7909
С	1.772.2	2 997.4	6 942.3	-60.9103

各组 TTCI分布的可靠度函数如图 10 所示。 可以看出,当可靠度为 95% 时,从低到高应力水平 对应的寿命分别为 8 903、8 746 和 7 502 h。

each group

3.3 通用当量初始缺陷尺寸分布模型及分析

在指定裂纹尺寸 a, 后,通用 EIFS 分布模型即 可对疲劳结构在不同情况下的寿命进行估计。通 过式(10,12)求出各组应力水平的 EIFS 分布参 数,应用1.3节提出的对数矩估计法求解通用化参 数,各组应力水平和通用后的 EIFS 分布参数由表 5所示。

表 5 EIFS 分布参数 Table 5 EIFS distribution parameters

组编	α	x_{u}	$Q\beta$
А	1.559 3	0.004 2	3.335 0
В	1.508 5	0.001 4	3.332 8
С	1.772 2	0.000 6	3.232 8
通用	1.613 3	0.001 5	3.360 2

表 5 中,代表 EIFS 分布上限值 x_u的取值范围 在 0.006~0.004 2 mm,均小于许用规定^[24]的 0.125 mm,可以认为该试验件的 IFQ 满足耐久性 要求。

图 11 给出了该典型结构在不同指定裂纹长度 a,下不同应力区的寿命估计结果。根据该典型结 构工作的应力区情况可以设定某个维修尺寸,以保 证结构乃至整机的经济性。如图 11 所示,若设定 维修尺寸为1 mm,可以得到各应力区下该典型结 构的维修寿命,随着应力水平的增加,该典型结构 指定裂纹尺寸所对应的寿命随裂纹扩展,在 180 MPa应力区下1 mm裂纹以后的剩余寿命极 短。同时,该结构在 170 MPa应力区使用较为安 全。140、150、160、170 和 180 MPa应力区对应 1 mm裂纹的寿命分别为 14 623、10 593、7 834、 5 901和4 518 h。

图 12 给出了该典型结构在不同可靠度及不同 应力区下的寿命估计结果。在低应力水平下

Fig.11 Life estimation under different *a*_r and stress zones

(160 MPa),该结构寿命约为15000h,95%、90% 及85%可靠度下寿命估计相差约为600h,而在高 应力水平(190 MPa)下3种可靠度下寿命几乎相 同,约为5600h。对于飞机中可维修的疲劳结构, 其寿命T需要满足指定裂纹尺寸下的设计维修寿 命T_a,即

设定该结构的指定裂纹尺寸为1mm、设计维 修寿命为6000h,则该结构应在170MPa应力区 以下工作;或者说该结构在170MPa应力区工作 时,其设计维修寿命约为5900h。这为结构维修 寿命设定提供统计学参考。

4 结 论

针对飞机典型结构的 IFQ 问题,开展了 3组不同应力水平下的载荷谱疲劳试验,基于断口分析和动态裂纹测量技术,保留原载荷谱的完整性的同时获取试验(*a*,*t*)数据,使得描述结构 IFQ 问题的 EI-FS 分析方法拥有最贴合实际的原始数据。

推导并完善基于三参数Weibull分布的TTCI 分布参数极大似然估计,应用降阶法和线搜索方法 求解Weibull分布的3个参数,提出使用对数矩估 计法通用化各组EIFS分布,从而快速获得与应力 水平无关的通用EIFS分布;使用蒙特卡罗模拟验 证该方法的正确性,同时与其他方法对比,确定了 该方法在估计总体方面更精准的优点。

通过对某型飞机7B04-T651 铝合金典型结构 的 IFQ分析,验证了所提出通用化模型方法的正 确性。结果表明,该典型结构的当量初始缺陷尺寸 满足许用缺陷尺寸要求。同时建立结构在不同应 力区、不同指定裂纹尺寸和不同可靠度下的寿命估 计模型,给结构寿命分析提供统计学指导。

参考文献:

- [1] 臧伟锋, 董登科, 李宏, 等. 飞机结构延寿的潜力与 途径[J]. 工程与试验, 2023, 63(2): 4-6, 14. ZANG Weifeng, DONG Dengke, LI Hong, et al. Potential and ways of life extension of aircraft structure [J]. Engineering & Test, 2023, 63(2): 4-6, 14.
- [2] 何宇廷,高潮,张腾,等.一种老龄飞机疲劳(耐久 性)延寿试验周期的确定方法[J]. 空军工程大学学报 (自然科学版), 2014, 15(3): 1-4. HE Yuting, GAO Chao, ZHANG Teng, et al. A method of determining fatigue test period to prolong fatigue (Durability) life for aging aircraft[J]. Journal of Air Force Engineering University (Natural Science Edition), 2014, 15(3): 1-4.
- [3] 姚卫星.飞机结构疲劳寿命分析的一些特殊问题[J]. 南京航空航天大学学报,2008,40(4):433-441. YAO Weixing. Some special subjects of fatigue life prediction on aircraft structures [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40 (4): 433-441.
- [4] 王彬文,陈先民,苏运来,等.中国航空工业疲劳与 结构完整性研究进展与展望[J]. 航空学报, 2021, 42 (5): 6-44.

WANG Binwen, CHEN Xianmin, SU Yunlai, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica Sinica, 2021, 42(5): 6-44.

- [5] JOHNSON W S. The history, logic and uses of the equivalent initial flaw size approach to total fatigue life prediction[J]. Procedia Engineering, 2010, 2(1): 47-58.
- [6] YANG J N. Statistical estimation of economic life for aircraft structures[J]. Journal of Aircraft, 1980, 17 (7): 528-535.
- [7] 刘文珽,郑旻仲,费斌军,等.概率断裂力学与概率 损伤容限/耐久性[M].北京:北京航空航天大学出 版社, 1999: 144-181. LIU Wenting, ZHENG Minzhong, FEI Binjun, et al. Probability fracture mechanics and probabilistic damage tolerance/durability[M]. Beijing: Beihang University Press, 1999: 144-181.
- [8] 刘斌超,鲁嵩嵩,曾苇鹏,等.从金属材料疲劳性能 的力学描述到飞机结构疲劳寿命评定:现状与展望 [J]. 固体力学学报, 2023, 44(4): 417-457. LIU Binchao, LU Songsong, ZENG Weipeng, et al. From mechanical description for metal fatigue proper-

ties to service life evaluation of aircraft structural components: Status and Challenges[J]. Acta Mechanica Solida Sinica, 2023, 44(4): 417-457.

高志刚, 何宇廷, 马斌麟, 等. 机翼用铝合金材料原 [9] 始疲劳质量对比[J]. 航空学报, 2021, 42(5): 337-346.

GAO Zhigang, HE Yuting, MA Binlin, et al. Initial fatigue quality comparison of aluminum alloy materials for aircraft wings[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 337-346.

[10] 周俊杰, 王生楠. 飞机机翼壁板紧固孔细节原始疲劳 质量评估[J]. 西北工业大学学报, 2018, 36(1): 91-95.

ZHOU Junjie, WANG Shengnan. Initial fatigue quality assessment for aircraft wing panel fastener hole[J]. Journal of Northwestern Polytechnical University, 2018, 36(1): 91-95.

[11] 董登科, 王俊扬, 孔繁杰. 紧固孔原始疲劳质量控制 与制孔技术研究[J]. 机械强度, 2000, 22(3): 214-216, 230.

DONG Dengke, WANG Junyang, KONG Fanjie. Research on fastener hole initial fatigue quality and manufacter technique[J]. Journal of Mechanical Strength, 2000, 22(3): 214-216, 230.

- [12] 张永涛. 某型飞机机翼盒段耐久性分析[D]. 南京:南 京航空航天大学,2009. ZHANG Yongtao. Durability analysis of an aircraft wing box[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
- [13] LIAN Y, WANG X, WANG J, et al. Application of strain energy based approach for evaluation of fatigue crack growth retardation effect under random overload [J]. Engineering Fracture Mechanics, 2022, 269: 108522.
- [14] CHANDRAN R K. New approach for the correlation of fatigue crack growth in metals on the basis of the change in net-section strain energy[J]. Acta Materialia, 2017, 129: 439-449.
- [15] SHAHANI A, KASHANI M H. Assessment of equivalent initial flaw size estimation methods in fatigue life prediction using compact tension specimen tests[J]. Engineering Fracture Mechanics, 2013, 99: 48-61.
- [16] LIU Y, MAHADEVAN S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution[J]. International Journal of Fatigue, 2009, 31 (3): 476-487.

- [17] LU Zizi, XIANG Yibing, LIU Yongming. Crack growth-based fatigue-life prediction using an equivalent initial flaw model. Part II: Multiaxial loading[J]. International Journal of Fatigue, 2010, 32(2): 376-381.
- [18] 张胜,何字廷,张腾,等.飞机典型连接结构原始疲劳质量评估[J].机械强度,2016,38(3):480-484.
 ZHANG Sheng, HE Yuting, ZHANG Teng, et al. Assessment on initial fatigue quality of aircraft typical connected structure[J]. Journal of Mechanical Strength, 2016, 38(3):480-484.
- [19] 曲延碌,张程道,阎书源.三参数Weibull分布的参数 估计[J]. 气象学报,1987(3):374-378.
 QU Yanlu, ZHANG Chengdao, YAN Shuyuan. Estimating the parameters for the three-parameter Weibull distribution[J]. Acta Meteorologica Sinica, 1987(3): 374-378.
- [20] 杨谋存.结构耐久性分析方法研究及其在轨道车辆 上的应用[D].南京:南京航空航天大学,2007.
 YANG Moucun. Study of structure durability analysis method and its application to rail vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
- [21] 傅惠民, 高镇同. 确定威布尔分布三参数的相关系数

优化法[J]. 航空学报, 1990, 11(7): 323-327. FU Huimin, GAO Zhentong. An optimization method of correlation coefficient for determining a three-parameter Weibull distribution[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(7): 323-327.

 [22] 邓建,古德生,李夕兵.确定可靠性分析Weibull分 布参数的概率加权矩法[J].计算力学学报,2004,21
 (5):609-613.

DENG Jian, GU Desheng, LI Xibing. Parameters and quantile estimation for fatigue life distribution using probability weighted moments[J]. Chinese Journal of Computational Mechanics, 2004, 21(5): 609-613.

- [23] 陈磊,姚伟召,郭全魁.效能评估理论、方法及应用
 [M].北京:北京邮电大学出版社,2016.
 CHEN Lei. YAO Weizhao, GUO Quankui. Effectiveness evaluation theory, method and application[M].
 Beijing: Beijing University of Posts and Telecommunications Press, 2016.
- [24] 中国航空研究院. 军用飞机疲劳·损伤容限·耐久性 设计手册[M]. 北京:中国航空研究院出版社, 1994.
 Chinese Aeronautical Establishment. Military aircraft fatigue, damage tolerance and durability design manual [M]. Beijing: The Press of Chinese Aeronautical Establishment, 1994.

(编辑:张蓓)