DOI:10.16356/j.1005-2615.2024.01.009

大角度三维基准转换的粗差探测算法

Feb. 2024

戴鹏洋1. モ 彬2

(1.同济大学测绘与地理信息学院,上海 200092; 2.南京工业大学测绘科学与技术学院,南京 211800)

摘要:三维基准转换广泛应用于大地测量、摄影测量、点云配准等领域,求解大角度、任意比例尺的三维基准转换 参数的研究有很多。然而,当观测值中含有粗差时,得到的转换参数估值会受到不利影响甚至被严重扭曲。为 处理含有粗差的大角度三维基准转换问题,本文首先将大角度三维基准转换问题抽象为具有等式约束的最小二 乘问题(Constrained least squares, CLS),推导参数在正交约束条件下的最小二乘解。然后,将灵敏度分析方法 应用到CLS问题中,研究残差加权平方和对观测值扰动的局部敏感性,并基于这些敏感度指标构造局部检验统 计量,进而推导出一个适用于CLS问题的粗差探测算法。最后,为核实该算法的有效性进行了仿真与实测数据 实验。实验结果表明:本文提出的基于灵敏度检验统计量的数据探测算法可以降低粗差的负面影响,得到可靠 的参数估值,从而有效解决大角度三维基准转换中的粗差处理问题。 关键词:大角度三维基准转换;约束最小二乘;粗差;数据探测算法 中图分类号:P207 **文章编号:**1005-2615(2024)01-0088-08 文献标志码:A

Data Snooping Algorithm for 3D Datum Transformation with Large Angle

$DAI Pengyang^1$, $WANG Bin^2$

(1. College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China; 2. School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211800, China)

Abstract: 3D datum transformation is widely used in geodesy, photogrammetry, point cloud registration and many other fields, and there have been many studies of 3D datum transformation problems for large angles and arbitrary scales. When the observations contain gross errors, the estimated transformation parameters are adversely affected and even severely distorted. In order to deal with large-angle 3D datum transformation problems that contain gross errors, this paper first abstracts the large-angle 3D datum transformation problem as constrained least squares (CLS) problem, and derives the least-squares solutions for the parameters under orthogonal constraints. Then, a distinctive sensitivity analysis approach is introduced into this CLS problem. The local sensitivity of the weighted sum of squared residuals to the perturbations of observations in the CLS problem is discussed, and then, the local test statistics are constructed based on these sensitivity indicators, deducing a data snooping algorithm for CLS problem. Finally, simulations and experiments with real data are carried out to verify the effectiveness of the algorithm. The computational results of the simulated and real experiment show that the proposed data-snooping algorithm using the sensitivity-based test statistics can effectually decrease the negative impact of the outliers and derive reliable parameters, which effectively solves the problem of processing gross errors in large-angle 3D datum transformation.

Key words: large-angle 3D datum transformation; constrained least squares; gross error; data snooping algorithm

基金项目:国家自然科学基金青年基金(42004002)。

收稿日期:2023-10-15;修订日期:2024-01-31

通信作者: 王彬, 男, 副教授, E-mail: binwangsgg@njtech.edu.cn。

引用格式:戴鹏洋,王彬.大角度三维基准转换的粗差探测算法[J].南京航空航天大学学报,2024,56(1):88-95.DAI Pengyang, WANG Bin. Data snooping algorithm for 3D datum transformation with large angle[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2024, 56(1):88-95.

三维基准转换在测绘科学领域广泛应用。空间三维坐标转换的模型中含有7个独立的参数,其中包含3个旋转角度、3个平移参数和1个尺度参数。基准转换的核心在于利用公共点的两套坐标求解转换参数,之后对非公共点进行基准转换。

经典的 Bursa-Wolf 模型^[1]和 Molodensky 模 型^[2]都是在小角度的基础上进行的简化,用于求取 小角度情况下的坐标转换参数。随着测量技术的 发展,在摄影测量领域、点云配准等方面都无法避 免求解任意旋转角度下的三维基准转换参数,其中 不乏大旋转角度的情形。为解决此类问题,文献 [3]在七参数的初值处按照泰勒级数展开,仅保留 一次项,将误差方程线性化基于最小二乘准则进行 参数估计迭代计算控制舍入误差。在进行线性化 时不可避免地要进行复杂的偏导数计算,直接解算 非常复杂。文献[4]通过将3个平移参数、1个尺度 参数、旋转矩阵中的9个方向余弦共13个参数视为 未知数,在这13个参数的初始值处做线性化处理, 旋转矩阵中的9个方向余弦中仅有3个独立参数, 利用旋转矩阵是一个正交矩阵这一先验约束条件 通过附有限制条件的间接平差法解算参数。文献 [5]用四元数的概念来表示基准参数,在进行计算 时不需要线性化和迭代,进一步拓展该算法可以在 约束条件下计算任意旋转角度的基于四元数的基 准转换参数,但该方法只适用于等精度的条件。文 献[6]利用多元模型的矩阵形式,将多点坐标组成 矩阵并顾及旋转矩阵的正交性导出了大角度三维 基准转换的解析分步解,与传统的迭代解有等效转 换结果,同时也避免了复杂的迭代计算过程。然 而,以上所提出的算法均未考虑到观测值中含有粗 差的情况。当观测值中含有粗差时,最小二乘方法 缺乏稳健性,参数估计结果不理想。Lehmann^[7]指 出异常值是可能由观测值含有粗差造成的错误,所 以含有粗差的观测值不应参与到平差的解算过 程。附有等式约束的最小二乘问题(Constrained least squares, CLS)同样会受到粗差的不利影响, 因此有必要研究针对CLS问题的粗差处理方法。 基于正态分布线性模型的敏感度分析理论自 Cook^[8]提出之后得到了广泛研究。Guo 等^[9]详细 讨论了随机模型扰动引起的LS残差加权平方和 的局部敏感性,利用矩阵微分法详细推导了敏感度 指标,并基于这些指标进行假设检验从而达到剔除 粗差的目的。 Wang 等^[10] 将广义 EIV (Errors-in-variable)模型的加权整体最小二乘解重 新表达成经典最小二乘问题,依据最小二乘理论推 导出检验统计量进行粗差探测。针对转换模型中 含有等式约束的问题, Wang等^[11]进一步提出了具 有等式约束的非线性高斯赫尔默特模型的数据探 测算法。

本文在文献[4]基础上,将尺度参数与旋转矩 阵相乘得到新的旋转矩阵,将其中的9个元素以及 3个平移参数视为未知数构建十二参数模型,相比 七参数模型简化了线性化的计算过程,加快了计算 时间。利用旋转矩阵的正交性推导出新的约束条 件,采用附有等式约束的最小二乘法求解未知参 数。借鉴文献[11]的思路,推导了CLS模型的粗 差探测算法,用于本文采用的十二参数模型中,达 到抵抗粗差的目的。

1 三维坐标转换的十二参数模型及 其解法

公共点坐标转换的数学模型表示为[4]

$$\begin{bmatrix} x_{2i} \\ y_{2i} \\ z_{2j} \end{bmatrix} - \begin{bmatrix} e_{x2i} \\ e_{y2i} \\ e_{z2i} \end{bmatrix} = \begin{bmatrix} x_{1i} \\ y_{1i} \\ z_{1j} \end{bmatrix} \mathbf{z} + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix}$$
(1)

式中: $[x_{1i} y_{1i} z_{1i}]^{T}$ 表示第*i*个公共点在原坐标系下 的观测向量; $[x_{2i} y_{2i} z_{2i}]^{T}$ 表示第*i*个点在目标坐 标系下的观测向量; $[e_{x_{2i}} e_{y_{2i}} e_{z_{2i}}]^{T}$ 代表 $[x_{2i} y_{2i} z_{2i}]^{T}$ 的随机误差向量;等式右端的 $[\Delta x \Delta y \Delta z]^{T}$ 代表3 个平移参数; **Z**为 3×3阶的矩阵,其中 9个元素均 视为参数,表示为

$$\boldsymbol{\Xi} = \begin{bmatrix} \boldsymbol{\xi}_{11} & \boldsymbol{\xi}_{12} & \boldsymbol{\xi}_{13} \\ \boldsymbol{\xi}_{21} & \boldsymbol{\xi}_{22} & \boldsymbol{\xi}_{23} \\ \boldsymbol{\xi}_{31} & \boldsymbol{\xi}_{32} & \boldsymbol{\xi}_{33} \end{bmatrix}$$
(2)

参数矩阵 $\Xi = \mu M$,其中 μ 代表尺度参数,M为 一个正交旋转矩阵,且 $M = M_3 M_2 M_1$ 。

$$M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\beta_{1} & \sin\beta_{1} \\ 0 & -\sin\beta_{1} & \cos\beta_{1} \end{bmatrix}$$
$$M_{2} = \begin{bmatrix} \cos\beta_{2} & 0 & -\sin\beta_{2} \\ 0 & 1 & 0 \\ \sin\beta_{2} & 0 & \cos\beta_{2} \end{bmatrix}$$
$$M_{3} = \begin{bmatrix} \cos\beta_{3} & \sin\beta_{3} & 0 \\ -\sin\beta_{3} & \cos\beta_{3} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

式中 β_1 、 β_2 、 β_3 表示旋转角度。当这3个角度很小时,旋转矩阵中该角度的余弦值可近似为1,正弦 值近似为0,以此来简化计算。对于大角度而言这 种简化便大大损失了精度。旋转矩阵M为正交矩 阵且满足 $MM^{T} = I_3(I_3$ 代表三阶单位矩阵)^[12-13], 因此, $\Xi\Xi^{T} = \mu^2 I_3$ 。从而可以得到5个独立的条件 方程,写成矩阵形式有^[14]

$$C = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 2\xi_{21}^{\circ} \\ 0 & 0 & 0 & \xi_{21}^{\circ} & \xi_{22}^{\circ} & \xi_{23}^{\circ} & \xi_{11}^{\circ} \\ 0 & 0 & 0 & \xi_{31}^{\circ} & \xi_{32}^{\circ} & \xi_{33}^{\circ} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \xi_{31}^{\circ} \end{bmatrix}$$

为求解上述模型在 $e_i^{T} P e_i = \min 准则下的最优 解,根据条件极值理论,构造拉格朗日函数$

$$\boldsymbol{\Phi} = \boldsymbol{e}_{l}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{e}_{l} + 2\boldsymbol{K}^{\mathrm{T}} (\boldsymbol{C} \delta \boldsymbol{\xi} + \boldsymbol{W}) \qquad (8)$$

式中*K*为拉格朗日乘数向量。为求**Φ**的极小值, 将**Φ**对δ**ξ**求偏导并令结果为0,则有

$$\frac{1}{2} \frac{\partial \boldsymbol{\Phi}}{\partial \boldsymbol{\xi}} \Big| \left(\hat{\boldsymbol{\xi}}, \hat{\boldsymbol{K}} \right) = \boldsymbol{A}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{l} - \boldsymbol{A}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{A} \delta \hat{\boldsymbol{\xi}} + \boldsymbol{C}^{\mathrm{T}} \hat{\boldsymbol{K}} = 0 \quad (9a)$$
$$\frac{1}{2} \frac{\partial \boldsymbol{\Phi}}{\partial \boldsymbol{\xi}} \Big| \left(\hat{\boldsymbol{\xi}}, \hat{\boldsymbol{K}} \right) = \boldsymbol{C} \delta \hat{\boldsymbol{\xi}} + \boldsymbol{W} = 0 \quad (9b)$$

$$\frac{1}{2} \frac{\partial K}{\partial K} | (\xi, K) = C \delta \xi + W = 0$$
(9b)

令 $N_1 = A^T P A$,则式(9a)两端同时乘以 $C N_1^{-1}$ 后与式(9b)相加可解得

$$K = -N_2^{-1}(CN_1^{-1}A^{T}Pl + W)$$
(10)
式中 $N_2 = CN_1^{-1}C^{T}$ 。将式(10)代入(9a)并整理便
解得所求参数估值为

$$\delta \hat{\boldsymbol{\xi}} = (N_1^{-1} - N_1^{-1} C^{\mathsf{T}} N_2^{-1} C N_1^{-1}) A^{\mathsf{T}} P l - N_1^{-1} C^{\mathsf{T}} N_2^{-1} W$$
(11)

在得到参数估值后残差可以由下式计算

$$\hat{\boldsymbol{e}}_{l} = \boldsymbol{l} - \boldsymbol{A}\delta\hat{\boldsymbol{\xi}} = \boldsymbol{R}\boldsymbol{l} + \boldsymbol{h}_{0} \qquad (12)$$

其中

$$R = I - A (N_1^{-1} - N_1^{-1} C^{\mathsf{T}} N_2^{-1} C N_1^{-1}) A^{\mathsf{T}} P \quad (13)$$

$$\boldsymbol{h}_{0} = \boldsymbol{A} \boldsymbol{N}_{1}^{-1} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{N}_{2}^{-1} \boldsymbol{W}$$
(14)

表系数矩阵。

显然,上述模型是关于参数的线性函数。由于 独立的参数仅有7个,而总的参数个数却有12个, 参数之间无法保持函数独立,求解时需要加入约束 条件。但约束条件关于参数是非线性的,因此需要 将约束条件方程在参数估值 *\$*⁰处利用泰勒级数展 开得到基于参数改正量的线性函数后再进行平差 计算。

可以利用式(4)采用间接平差的方法先获取参数的近似值 *ç*°,再将式(3,4)在 *ç*°处泰勒展开,取一次项可得

$$l - e_l = A\delta\xi \tag{5a}$$

$$C\delta\boldsymbol{\xi} + \boldsymbol{W} = \boldsymbol{0} \tag{5b}$$

式中: $l = L - A\xi^{\circ}$, $W = g(\xi^{\circ})$, e_l 代表 l的随机 误差向量, $Q_{ll} = Q_{LL} = Q$, l = L的权阵相同均 为 P_{\circ}

$$E(\boldsymbol{e}_{l}) = E(\boldsymbol{e}_{L}) = 0 \tag{6a}$$

$$D(\boldsymbol{e}_{l}) = D(\boldsymbol{e}_{L}) = \sigma_{0}^{2} \boldsymbol{Q} = \sigma_{0}^{2} \boldsymbol{P}^{-1} \qquad (6b)$$

2 敏感度分析及附有等式约束的 最小二乘数据探测算法

在先验单位权方差因子 σ_0^2 已知的情况下,要 检验 $\hat{\sigma}_0^2$ 与 σ_0^2 的一致性,其中 $\hat{\sigma}_0^2 = \frac{\hat{e}_L^T P \hat{e}_L}{r} = \frac{\hat{e}_L^T P \hat{e}_L}{n-u+s}$ 代表验后单位权方差。原假设 $H_0: \hat{\sigma}_0^2 = \sigma_0^2$,备择假设 $H_1: \hat{\sigma}_0^2 \neq \sigma_0^2$ 。构造统计量: $\chi^2 = (n-u+s)\frac{\hat{\sigma}_0^2}{\sigma_0^2} \sim \chi^2(n-u+s)$,自由度为n-u+s,其中, n为观测值个数,u为参数个数,s为约束方程个数。 若满足 $\chi_{d/2}^2(n-u+s) < \chi^2 < \chi_{1-d/2}^2(n-u+s)$, α 为显著水平,则接受原假设 H_0 ,否则,接受备择假 设 H_1 ,拒绝 H_0 ,这意味着观测值中可能含有粗差。 为了进一步检测异常点的具体位置,需要对每个观 测值构造局部检验统计量^[15]。

最小二乘法的残差加权平方和Ω在最小二乘 平差中起到关键作用。Ω对观测或随机模型扰动 的局部敏感性可作为粗差探测重要的指标^[16]。不 过上述研究是基于标准最小二乘法的,为了构造 CL的粗差检验统计量,将敏感度分析方法运用到 上述三维基准转换的CLS问题。利用矩阵微分方 法推导出观测值扰动的残差加权平方和的局部敏 感度指标,可以依据这些敏感度指标构造检验统计 量进行数据探测。

易知式(12)中R和 h_0 具有以下性质

$$RR = RR^{T} = Q^{-1} = Q^{-1}RRh_{0} = h_{0}$$
 (15)
残差的加权平方和对 *l*进行微分可得

$$\frac{\partial \Omega}{\partial l} = \frac{\partial \hat{\boldsymbol{e}}_{l}^{\mathrm{T}}}{\partial l} \cdot \frac{\partial \Omega}{\partial \hat{\boldsymbol{e}}_{l}} = 2\boldsymbol{R}^{\mathrm{T}}\boldsymbol{Q}^{-1}\hat{\boldsymbol{e}}_{l} \qquad (16)$$

结合式(15)可知

$$\frac{\partial \Omega}{\partial l} = 2\mathbf{Q}^{-1}\mathbf{R}(\mathbf{R}\mathbf{l} + \mathbf{h}_0) = 2\mathbf{Q}^{-1}(\mathbf{R}\mathbf{l} + \mathbf{h}_0) = 2\mathbf{Q}^{-1}\hat{\mathbf{e}}_l$$
(17)

因此,Ω对第i个观测值的微分为

$$\frac{\partial \Omega}{\partial l_i} = 2c_i^{\mathrm{T}} \boldsymbol{Q}^{-1} \hat{\boldsymbol{e}}_i \qquad (18)$$

式中*c*_{*i*}为一个列向量,这个列向量中的第*i*个位置 上的元素是1,其余位置上的元素为0。可将式 (18)作为评价残差的加权平方和Ω对第*i*个观测值 的扰动灵敏度的指标。

由协方差传播率及式(16)的关系可得

 $\operatorname{var}(\boldsymbol{c}_{i}^{\mathrm{T}}\boldsymbol{Q}^{-1}\hat{\boldsymbol{e}}_{l}) = \sigma_{0}^{2}\boldsymbol{c}_{i}^{\mathrm{T}}\boldsymbol{Q}^{-1}\boldsymbol{R}\boldsymbol{Q}\boldsymbol{R}^{\mathrm{T}}\boldsymbol{Q}^{-1}\boldsymbol{c}_{i} =$

$$\sigma_0^2 \boldsymbol{c}_i^{\mathrm{T}} \boldsymbol{Q}^{-1} \boldsymbol{R} \boldsymbol{c}_i \tag{19}$$

式中随机变量服从正态分布,可以利用数理统计中的知识构造如下统计量

$$l_{i,N} = \frac{c_i^{\mathsf{T}} \boldsymbol{Q}^{-1} \hat{\boldsymbol{e}}_i}{\sigma_0 \sqrt{c_i^{\mathsf{T}} \boldsymbol{Q}^{-1} \boldsymbol{R} \boldsymbol{c}_i}} \sim N(0, 1) \qquad (20)$$

式中N(0,1)代表标准正态分布。当满足|l_{i,N}|> N_%(0,1)时,说明第i个观测值的扰动对Ω的影响 较大,这个观测值中很有可能存在粗差或者在进行 平差时被粗差"污染"。将此观测值组成的方差剔 除之后再利用剩下的方程进行平差。

在不知道先验单位权方差的情况下,可以采用 平差计算之后得到的验后单位权方差公式推导新 的统计量,表示如下

$$l_{i,\mathrm{Tau}} = \frac{l_{i,N}}{\sqrt{\hat{\sigma}_0^2/\sigma_0^2}} = \frac{c_i^{\mathrm{T}} Q^{-1} \hat{e}_l}{\hat{\sigma}_0 \sqrt{c_i^{\mathrm{T}} Q^{-1} R c_i}} \sim \tau(n-u+s)$$

(21)

式中 τ (n - u + s)代表自由度为n - u + s的 τ 分 $\pi^{[18-20]}$ 。它和t分布存在如下关系

$$\tau_{n-u+s} = \frac{t_{n-u+s-1}\sqrt{n-u+s}}{\sqrt{t_{n-u+s-1}^2 + n - u + s - 1}} \quad (22)$$

式中 $t_{n-u+s-1}$ 代表自由度为n-u+s-1的t分布。

类似地,当满足 $|l_{i,Tau}| > \tau_{\frac{s}{2}}(n-u+s)$ 时,就 说明第i个观测值的扰动对 Ω 的影响较大,这个观

测值中很有可能存在粗差或者在进行平差时被粗 差"污染"。将此观测值组成的方差剔除之后再利 用剩下的"干净"的方程进行平差计算。

检验异常值的程序通常称为数据探测^[17]。如 果数据中有很多异常值,需要循环进行数据探测程 序^[21-22]。如果单位权方差已知时,有

$$|l_{j,N}| = \max_{1 \le i \le n} \left(\left(|l_{i,N}| \right) > N_{\frac{\alpha}{2}}(0,1) \right) \quad (23)$$

或者单位权方差未知时,有

$$\left|l_{j,\mathrm{Tau}}\right| = \max_{1 \leq i \leq n} \left(\left|l_{i,\mathrm{Tau}}\right|\right) > \tau_{\mathscr{Y}_{2}}(n-u+s) \quad (24)$$

这意味着 Ω 对 *l* 中的第*j*个观测值的扰动灵敏度较高,这个观测值可以认为是含有异常值的观测值, 应该将其移除后用剩下的观测值重新进行平差计算,直到所有的统计量均通过检验即完成数据探测 过程。

3 实验分析

3.1 仿真实验

假设在某一空间中均匀分布 25个点。它们在 原始坐标系下的坐标真值已知。选取其中 15个点 作为公共点,剩下 10个点作为检查点。两个坐标 系之间的转换参数可以设置如下: $\Delta x=100, \Delta y=$ $-100, \Delta z=50, \mu=1.2$ 。旋转矩阵由下列旋转角度 $\beta_1=1.0 \text{ rad}, \beta_2=1.5 \text{ rad}, \beta_3=-0.5 \text{ rad} 计算得到。$ 由此便可以利用比例参数以及旋转角度得到式(1) 中的 **E**。再利用式(1)便可以计算出这 25个点在 目标坐标系中的坐标转换值,将其视为真值。

MATLAB中的 normrnd 函数可以生成随机误 差。每次实验在公共点的原始坐标与目标坐标值 中均加入由该函数生成独立的服从均值为0、方差 为0.01的正态分布的随机误差;另外设置3个粗 差,位置随机产生,其大小的绝对值介于先验标准 差的5~30倍之间。重复进行1000次模拟实验。

假设 σ_0 =0.01。具体方案表示如下:

(1)不在观测值中添加粗差,由公共点坐标利 用附有等式约束的最小二乘法计算十二参数估值。

(2) 在观测值中添加粗差,用附有等式约束的 最小二乘法以及约束最小二乘的数据探测算法分 别计算十二参数的估值,在单位权中误差的先验值 已知的情况下,数据探测算法中可以使用式(20)中 的统计量*l*_{i,N}(显著性水平α=0.05)进行粗差检验。

通过上述两方案得到参数估值之后,对于检查 点,便可以利用之前提出的坐标转换公式计算它们 在目标坐标系中的值 [$\hat{x}_{u} \hat{y}_{2i} \hat{z}_{2i}$]^T。假设 [$x_{u} y_{2i} z_{2i}$]^T为这些点在目标坐标系中的真实坐 标,则转换坐标在*x*、y和z方向上的均方根误差分 别为

RMSE_x =
$$\sqrt{\sum_{i=1}^{10} (\hat{x}_{u} - x_{u})^{2} / 10}$$
 (25)

RMSE_y =
$$\sqrt{\sum_{i=1}^{10} (\hat{y}_{zi} - y_{zi})^2 / 10}$$
 (26)

RMSE_x =
$$\sqrt{\sum_{i=1}^{10} (\hat{z}_{u} - z_{u})^{2}/10}$$
 (27)

从而可得点位均方根误差为 $RMSE_p =$

$$\sqrt{(\mathrm{RMSE}_{x})^{2} + (\mathrm{RMSE}_{y})^{2} + (\mathrm{RMSE}_{z})^{2}}$$
 (29)

计算得到点位均方根误差如图1~3所示,具体的计算结果见表1。

图3 方案2所得结果x、y、z方向误差序列

Fig.3 Sequences of RMSE_p obtained by Scheme 2 in directions x, y, z

表1 均方根误差序列的统计信息 Table 1 Statistics for RMSE sequences

		•	
RMSE	参数	数据探测算法	CLS算法
	平均值	0.008 8	0.030 4
$RMSE_x$	最大值	0.040 3	0.105 4
	标准差	0.006 7	0.023 1
	平均值	0.008 4	0.033 7
$RMSE_y$	最大值	0.039 0	0.122 0
	标准差	0.006 5	0.025 0
	平均值	0.007 9	0.026 5
$RMSE_z$	最大值	0.030 5	0.084 4
	标准差	0.005 9	0.018 7
	平均值	0.016 7	0.061 9
$RMSE_{P}$	最大值	0.042 3	0.123 1
	标准差	0.007 3	0.021 2

根据以上实验结果,可以发现:当观测值中不 含有粗差时,附有等式约束的最小二乘算法可以得 出较好的转换参数值。然而当粗差存在时该算法 会受到影响,所得结果严重扭曲,导致转换坐标的 点位均方根误差增大了近3倍。

数据探测算法抵抗粗差的效果很明显,均方根 误差值序列的平均值、最大值以及标准差明显减少 很多,点位均方根误差的平均值、最大值以及标准 差分别是 CLS 算法的 26.9%、34.4%、34.3%,可见 数据探测方法可以有效解决观测含有粗差的问题, 并且得到精度较高的转换参数。 本文还进行了另外两组实验,设置的粗差个数 分别为4个、5个,粗差的绝对值介于3~20倍先验 标准差之间,这两组实验结果均表明数据探测算法 可以准确的剔除粗差,得到精度更高的转换参数。

3.2 实例数据

使用两组实际测量的数据进行实验,验证本文

提出的方法的性能与精度。

第1个例子中采用文献[23]提供的实测三维 坐标值(表2),这组数据也为文献[10-11,14]所采 用,使用本文方法的参数结算结果见表3。第2个 例子采用文献[24]中的数据,使用本文方法的参 数解算结果见表4。

表 2 公共点三维坐标值的实测值^[23] Table 2 Coordinates of the common points^[23]

上日		源坐标系		目标坐标系		
点专	x_1/m	y_1/m	z_1/m	x_2/m	y_2/m	z_2/m
80601	5 234 251.250	905 003.201 1	3 518 869.674	5 233 991.482	905 003.106 4	3 519 305.459
32127	5 218 851.932	919 148.974 9	3 537 928.348	5 218 595.021	919 152.324 4	3 538 363.627
80600	5 220 818.669	772 128.361 3	3 569 828.606	5 220 565.466	772 130.563 0	3 570 253.01
32136	5 148 067.252	803 912.306 0	3 668 491.426	5 147 806.722	803 921.322 3	3 668 928.371
80598	5 081 676.230	771 786.812 2	3 765 023.787	5 081 410.788	771 799.425 6	3 765 460.689
80597	5 022 479.060	955 283.548 7	3 801 754.143	5 022 218.176	955 297.253 8	3 802 185.975

表3 CLS方法及其数据探测算法的解算结果(算例1)

参数	CLS算法		数据探测算法		
	参数估值	标准差	参数估值	标准差	
x/m	-293.362 9	82.233 2	-226.7451	26.081 3	
∆y/m	40.798 1	157.556 1	27.190 8	53.898 6	
$\Delta z/m$	354.730 3	85.386 2	394.981 9	26.148 4	
$\hat{\xi}_{11}$	1.000 010 667	1.209×10^{-5}	0.999 998 914	3.705×10^{-6}	
$\hat{oldsymbol{\xi}}_{12}$	0.000 021 228	2.144×10^{-5}	0.000 023 882	$7.256 imes 10^{-6}$	
$\hat{oldsymbol{\xi}}_{13}$	$-0.000\ 010\ 763$	1.380×10^{-5}	$-0.000\ 013\ 443$	4.348×10^{-6}	
$oldsymbol{\xi}_{21}$	$-0.000\ 021\ 228$	2.144×10^{-5}	$-0.000\ 023\ 882$	$7.256 imes 10^{-6}$	
$\hat{oldsymbol{\xi}}_{\scriptscriptstyle 22}$	1.000 010 667	1.209×10^{-5}	0.999 998 913	$3.705 imes 10^{-6}$	
$\hat{\xi}_{\scriptscriptstyle 23}$	0.000 018 196	1.755×10^{-5}	0.000 028 442	$5.768 imes 10^{-6}$	
$\xi_{\scriptscriptstyle 31}$	0.000 010 763	1.380×10^{-5}	0.000 0134 44	4.348×10^{-6}	
$\hat{oldsymbol{\xi}}_{32}$	$-0.000\ 018\ 196$	1.755×10^{-5}	$-0.000\ 028\ 441$	$5.768 imes 10^{-6}$	
É.,	1.000 010 667	1.209×10^{-5}	0.999 998 914	3.705×10^{-6}	

表4 CLS方法及其数据探测算法的解算结果(算例2)

Table 4	Calculation results ob	tained by CLS and the	e corresponding data	-snooping algorithm	(Example 2)
---------	------------------------	-----------------------	----------------------	---------------------	-------------

会粉	CLS算法		数据探测算法	
奓鉯	参数估值	标准差	参数估值	标准差
$\Delta x/m$	$-4.706\ 1$	0.011 6	-4.6849	0.001 0
$\Delta y/m$	1.889 9	0.011 3	1.906 8	0.001 2
$\Delta z/{ m m}$	$-2.705\ 2{ imes}10^{-5}$	0.020 0	0.003 3	0.001 7
$\hat{oldsymbol{\xi}}_{^{11}}$	$-0.276\ 504\ 732$	$8.175\;51\! imes\!10^{-4}$	-0.270746440	$6.881\ 48 imes 10^{-5}$
$\xi_{\scriptscriptstyle 12}$	$-0.959\ 605\ 627$	$7.850\ 82\! imes\!10^{-4}$	$-0.963\ 204\ 676$	$7.245\ 09\! imes\!10^{-5}$
$\xi_{\scriptscriptstyle 13}$	0.002 161 123	$1.230\ 09\! imes\!10^{-3}$	0.001 149 131	$9.622~63 imes 10^{-5}$
$\xi_{\scriptscriptstyle 21}$	0.959 605 703	$7.853\ 32\! imes\!10^{-4}$	0.963 204 784	$7.247\ 14 imes 10^{-5}$
$\xi_{\scriptscriptstyle 22}$	$-0.276\ 498\ 367$	$8.169.75 imes 10^{-4}$	-0.270744778	$6.877~74 \times 10^{-5}$
$\xi_{\scriptscriptstyle 23}$	0.002 836 273	$2.030\ 76 imes 10^{-3}$	0.001 418 579 5	$1.733~75 \times 10^{-4}$
$\xi_{\scriptscriptstyle 31}$	$-0.002\ 127\ 027$	$1.920\ 10\! imes\!10^{-3}$	$-0.001\ 054\ 697$	$1.617~70 imes 10^{-4}$
$\xi_{\scriptscriptstyle 32}$	0.002 861 932	$1.339~85 imes 10^{-3}$	0.001 490 128	$1.077~86\! imes\!10^{-4}$
$\xi_{\scriptscriptstyle 33}$	0.998 643 972	$7.822\ 20\! imes\!10^{-4}$	1.000 532 294	$6.866\ 03\! imes\!10^{-5}$
$\hat{\sigma}_{_0}/\mathrm{m}$	0.02	24 1	0.00)1 8

本节分别采用CLS算法及其数据探测算法根 据两组实际测量的数据求解基准转换的十二参数, 在数据探测过程中由于先验单位权方差因子未知, 无法采用正态分布统计量,应选择式(21)推导的 $l_{i,Tau}(\alpha=0.05)$ 统计量。第1组数据的计算结果以 及精度信息(参数的标准差)如表3所示。由表3中 数据可见,当含有粗差的观测值被剔除之后,求得 的转换参数尤其是3个平移参数有很大的变化。 相比CLS算法,数据探测算法所得参数的标准差 下降了67%左右,得到了更准确、精度更高的转换 参数。对比第2组数据的计算结果,由于CLS算法 无法抵抗粗差,所得的验后单位权误差较大,达到 2.4 cm。而数据探测算法所得的验后单位权误差 仅为1.8 mm,与实验仪器的标称精度1~2 mm符 合。各参数的标准差也有显著的改善。在计算过 程中,第7、8、5、6个观测方程相继被识别为含粗差 的方程并剔除,均为2号点和3号点对应的观测方 程,这与测量过程中2号、3号标靶球被小幅移动有 关,因此数据探测算法可以提高参数估计的稳 健性。

4 结 论

本文将大角度三维基准转换问题抽象成附有 等式约束的最小二乘问题,采用十二参数模型来求 解大角度下的三维基准转换参数,推导了参数在正 交矩阵条件约束下的最小二乘解。当观测值中含 有粗差时所得结果会严重失真。为解决这一问题, 本文将敏感度分析方法运用到上述三维基准转换 的CLS问题,利用矩阵微分方法推导出观测值扰 动的残差加权平方和的局部敏感度指标。在先验 单位权方程已知和未知的情况下构造了两个不同 的检验统计量用于数据探测。模拟实验与实测数 据实验结果均表明所提出的算法可以有效地抵抗 观测粗差的不利影响,参数的准确性与精度得到明 显的提高,从而有效地解决了大角度三维基准转换 中的粗差处理问题。

参考文献:

- WOLF H. Geometric connection and re-orientation of three-dimensional triangulation nets[J]. Bulletin Géodésique, 1963, 37(2): 165-169.
- [2] MOLODENSKY M S, EREMEEV V F, YURKI-NA M I. Methods for the study of the external gravitational field and figure of the earth[M]. Jerusalem: Israeli Programme for the Translation of Scientific

Publications, 1962.

- [3] 姚宜斌,黄承猛,李程春,等.一种适用于大角度的三 维坐标转换参数求解算法[J]. 武汉大学学报:信息科 学版, 2012, 37(3): 253-256.
 YAO Yibin, HUANG Chengmeng, LI Chengchun, et al. A new algorithm for solution of transformation parameters of big rotation angle's 3D coordinate[J]. Geomatics & Information Science of Wuhan University, 2012, 37(3): 253-256.
 - [4] 林鹏,刘超,高井祥,等.附加约束的三维基准转换的高斯-赫尔默特模型[J].中国矿业大学学报,2017,46(5):1152-1158.
 LIN Peng, LIU Chao, GAO Jingxiang, et al. Three-dimensional datum transformation based on Gauss-Helmet model with constraints[J]. Journal of China University of Mining & Techonology,2017,46(5):1152-1158.
 - [5] SHEN Y Z, CHEN Y, ZHENG D H. A quaternionbased geodetic datum transformation algorithm[J]. Journal of Geodesy, 2006,80(5): 233-239.
 - [6] 李博峰,黄善琪.大角度三维基准转换的解析封闭解
 [J]. 测绘学报,2016,45(3):267-273.
 LI Bofeng, HUANG Shanqi. Analytical close-form solutions for three-dimensional datum transformation with big rotation angles[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3):267-273.
 - [7] LEHMANN R. On the formulation of the alternative hypothesis for geodetic outlier detection[J]. Journal of Geodesy, 2013, 87(4): 373-386.
 - [8] COOK R D. Detection of influential observation in linear regression[J]. Technometrics, 1977, 19(1): 15-18.
 - [9] GUO J F, OU J K, WANG H T. Robust estimation for correlated observations: Two local sensitivitybased down weighting strategies[J]. Journal of Geodesy, 2010, 84(4): 243-250.
 - [10] WANG B, YU J, LIU C, et al. Data snooping algorithm for universal 3D similarity transformation based on generalized EIV model[J]. Measurement, 2018, 119: 56-62.
 - [11] WANG B, FANG X, LIU C, et al. Data snooping for the equality constrained nonlinear Gauss-Helmert model using sensitivity analysis[J]. Journal of Surveying Engineering, 2020, 146(4): 04020015.
 - [12] WANG B, LI J, LIU C, et al. Generalized total least squares prediction algorithm for universal 3D similarity transformation[J]. Advances in Space Research, 2017, 59(3): 815-823.
 - [13] XU T, CHANG G, WANG Q, et al. Analytical 3D rotation estimation using vector measurements with

full variance-covariance matrix[J]. Measurement, 2017,98: 131-138.

- [14] FANG X. Weighted total least-squares with constraints: A universal formula for geodetic symmetrical transformations[J]. Journal of Geodesy, 2015, 89 (5): 459-469.
- [15] TEUNISSEN P J G. Distributional theory for the DIA method[J]. Journal of Geodesy, 2017, 92(2): 59-80.
- [16] GUO J F, OU J K, WANG H T. Quasi-accurate detection of outliers for correlated observations [J]. Journal of Surveying Engineering, 2007, 133(3): 129-133.
- [17] BAARDA W. A testing procedure for use in geodetic networks[J]. Publication on Geodesy, New Series, 1968, 2(5): 1-42.
- [18] POPE A J. The statistics of residuals and the detection of outliers: NOAA Technical Report NOS NGS; 65-1[R]. [S.l.]; NOAA, 1976.
- [19] LEHMANN R. Improved critical values for extreme normalized and studentized residuals in Gauss-Markov models[J]. Journal of Geodesy, 2012, 86(12):1137-

1146.

- [20] BASELGA S. Critical limitation in use of τ test for gross error detection[J]. Journal of Surveying Engineering, 2007, 133(2): 52-55.
- [21] AMIRI-SIMKOOEI A R, JAZAERI S. Data-snooping procedure applied to errors-in-variables models[J].
 Studia Geophysicaet Geodaetica, 2013, 57(3): 426-441.
- [22] ROFATTO V F, MATSUOKA M T, KLEIN I, et al. A half-century of Baarda's concept of reliability: A review, new perspectives, and applications[J]. Survey Review, 2018,52(1): 261-277.
- [23] FELUS Y A, BURTCH R C. On symmetrical threedimensional datum conversion[J]. GPS Solut, 2009, 13: 65-74.
- [24] 王彬.广义整体最小二乘的拓展理论及其在测量数据 处理中的应用研究[D].武汉:武汉大学,2017.
 WANG Bin. Study on the extended theories of generalized total least squares and their applications in surveying data processing[D]. Wuhan, China: Wuhan University,2017.

(编辑:孙静)