DOI:10.16356/j.1005-2615.2023.06.004

基于自适应干扰观测器的无人直升机模型参考跟踪控制

潘世豪1,王 婷2,张浩然1,李 涛1

(1.南京航空航天大学自动化学院,南京211106;2.南京林业大学信息科学技术学院,南京210037)

摘要:针对外部干扰影响下无人直升机(Unmanned aerial helicopter, UAH)模型参考跟踪控制问题开展研究, 提出基于自适应干扰观测器的跟踪控制设计方案。首先,根据干扰部分可测特性将其建模为存在参数误差下的 非线性外源系统,并设计了状态观测器及其自适应调节下的干扰观测器(Disturbance observer, DO),用于估计 无人机系统的未知状态和外部干扰。其次,将模型参考控制与基于干扰观测器的控制方法相结合,提出抗干扰 复合控制设计策略,获得了由观测与跟踪误差动态组成的闭环系统。再次,利用Lyapunov稳定性理论建立了给 定H_{ao}性能下判定闭环系统渐近稳定的充分性条件,并借助矩阵变换技术获得了观测器和控制器的联合设计方 案。最后,通过数值仿真验证了所提跟踪控制算法的有效性和优越性。

关键词:无人直升机;模型参考跟踪控制;自适应干扰观测器;抗干扰复合控制器;H_∞控制
 中图分类号:TP273
 文献标志码:A
 文章编号:1005-2615(2023)06-0977-11

Reference Model Tracking Control for Unmanned Aerial Helicopters Based on Adaptive Disturbance Observer

PAN Shihao¹, WANG Ting², ZHANG Haoran¹, LI Tao¹

(1. College of Automation Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China;2. School of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China)

Abstract: The reference model tracking control of an unmanned aerial helicopter (UAH) under outside disturbance is studied, and a tracking control scheme based on the adaptive disturbance observer is proposed. Firstly, the disturbance is modelled as a nonlinear exogenous system with uncertain parameter error based on the available information. Secondly, a state observer and an adaptive disturbance observer (DO) are proposed to estimate the unmeasurable state and disturbance of the UAH system. Thirdly, by combining the reference model control and DO-based control, a composite anti-disturbance control scheme is presented to derive an overall closed-loop system consisting of tracking error and observer error. Fourthly, based on the Lyapunov stability theory, a sufficient condition on H_{∞} performance index and asymptotic stability is obtained, and a co-design method of the observers, controller, and adaptive law is proposed by resorting to matrix transformation. Finally, numerical simulations demonstrate the effectiveness and superiority of the proposed tracking control algorithm.

Key words: unmanned autonomous helicopter; model reference tracking control; adaptive disturbance observer; composite anti-disturbance controller; H_∞ control

基金项目:国家自然科学基金(62073164, 61922042)。

收稿日期:2023-02-07;修订日期:2023-08-08

通信作者:李涛,男,博士,教授,博士生导师,E-mail: autolitao@nuaa.edu.cn。

引用格式:潘世豪,王婷,张浩然,等.基于自适应干扰观测器的无人直升机模型参考跟踪控制[J].南京航空航天大学学报,2023,55(6):977-987. PAN Shihao, WANG Ting, ZHANG Haoran, et al. Reference model tracking control for unmanned aerial helicopters based on adaptive disturbance observer[J]. Journal of Nanjing University of Aeronautics & Astronautics,2023,55(6):977-987.

无人直升机 (Unmanned aerial helicopter, UAH)作为一种常见的飞行器,已广泛应用于工业 和军事等领域。相较于固定翼无人机,UAH具有 垂直起降、起飞着陆场地小及空中悬停等优点,可 以在危险和有限空间中完成运输、巡检、救援或更 加复杂的任务^[1-2]。因此,研究UAH系统控制问题 并使其拥有更好飞行性能具有重要的理论意义和 应用前景。鉴于UAH系统的高度非线性、强耦合 和欠驱动等特点,尤其是UAH各通道严重耦合, 外部干扰对有限控制输入的UAH影响巨大,使得 飞行质量大幅下降,给控制器设计带来巨大挑战。 国内外研究人员提出很多有效的控制方法,其中线 性控制技术在UAH领域已经取得了很多优秀的 成果。文献[3]考虑优化算法与比例-积分-微分控 制 (Proportion, integration, and differentiation, PID)控制相结合,实现给定目标函数下的系统性 能最优的 PID 参数。文献[4] 考虑悬停状态下的 UAH,通过系统辨识的方法获取UAH线性模型, 基于线性二次型调节器(Linear quadratic regular, LQR)方法设计UAH姿态控制器。文献[5]针对 UAH鲁棒姿态控制问题,结合 PID 控制设计由 PI 控制器和鲁棒补偿器两部分组成的鲁棒控制器。 文献[6]提出一种基于模型的UAH线性系统反步 跟踪控制方案,所提控制器能够捕捉UAH耦合多 变量动力学行为。虽然线性控制已经较为完备,且 稳定性分析和控制器设计较为方便,但多数用于 UAH完成控制精度不高或者不是特别苛刻的控制 任务。

考虑无人机飞行环境复杂,控制系统难免会遭 受各种干扰,影响UAH系统的控制性能,甚至导 致系统失稳。因此,如何提高抗干扰能力是设计 UAH飞行控制器的关键。目前已提出许多有效的 方法,并被用于实际系统中,如鲁棒控制[7-8]、滑模 控制^[9]、神经网络控制^[10-11]等。与上述抗干扰控制 方法不同,文献[12-17]控制方法采取的策略是将 干扰直接测量并通过在控制器中添加补偿项从而 消除干扰影响。然而大多数情况下,实际外部干扰 是难以直接测量。因此,基于干扰观测器的控制方 法受到广泛关注并取得了许多研究结果,包括扩张 状态观测器[12-13]、自适应观测器[14]、区间干扰观测 器[15-17]等。例如,文献[15]设计干扰观测器估计阵 风影响,并将主动抗干扰控制与比例积分控制分别 作用于UAH内外环实现姿态控制;文献[16]设计 非线性干扰观测器估计执行器故障与不确定组成 的复合干扰;文献[17]基于外部干扰特性设计观测 器,给出抗干扰复合控制器并用于UAH控制系统 进行验证。

实际UAH飞行中,可获取外部干扰部分可测 或统计信息,因而可提前利用部分可测信息对其进 行建模,引入外源系统来描述这些未知干扰的方 法。现有研究中用于描述外部干扰的外源模型主 要为线性系统或非线性系统。线性外源模型可以 描述未知恒定负载和谐波信号等线性信号,某些 UAH 阵风干扰通常为周期谐波型,因此可通过线 性模型进行描述。针对线性外源干扰模型下UAH 系统,文献[18]提出基于非线性干扰观测器的复合 动态面跟踪控制方案,解决了UAH姿态和高度抗 干扰跟踪控制问题。文献[19]同时设计状态观测 器和干扰观测器估计不可测状态和外部时变干扰, 分别建立状态反馈鲁棒弹性控制和动态输出反馈 鲁棒弹性控制方案,取得较好的跟踪性能。同时, 为了描述更为复杂的外部干扰,文献[20-22]提出 了非线性外源干扰模型,可用于描述包含建模不确 定性的多源异质干扰,虽然引入非线性项可描述更 一般的干扰,但使得观测器和控制器设计变得更为 复杂。文献[20]构造非线性干扰观测器用于估计 并补偿外源干扰模型下的外部干扰。文献[21]针 对非线性外源干扰模型,通过构造非线性干扰观测 器估计并结合耗散控制理论提出一种基于线性矩 阵不等式(Linear matrix inequalities, LMIs)的抗干 扰复合控制方案。文献[22]考虑非线性外源干扰 模型下的多源干扰条件及随机干扰与输入摄动等 因素,基于干扰观测器的控制方法提出UAH系统 弹性跟踪控制方案。需要指出的是,上述结果均假 设外源干扰模型参数矩阵或非线性项精确已知。 但由于外源干扰模型独立于受控UAH系统,实际 应用中难以获取较为精确的建模信息,因而考虑具 有参数误差的外源干扰模型更具理论意义和实际 价值。根据现有文献,基于参数误差非线性外源干 扰模型的UAH主动抗干扰控制问题尚未得到探 讨,而这正是本文的研究动机和工作重点。

根据现有研究不足,本文提出了一种基于自适应干扰观测器的UAH模型参考跟踪控制设计方案。首先,假设外部干扰可由参数误差下非线性外源系统描述,设计状态观测器和新型干扰观测器估计UAH状态与干扰,并获得观测误差动态。然后,根据给定的参考模型构建跟踪误差系统,并提出了抗干扰复合控制策略。接着,设计逼近参数误差项的自适应律,借助Lyapunov稳定性理论分析闭环系统稳定性,给出观测器与控制器增益的联合求解方法。最后,仿真算例说明本文所提跟踪控制方案的有效性。本文主要贡献如下:

(1)针对外部干扰的非线性外源模型存在建模

误差的情况,提出一种自适应调节下的干扰观测器 设计,能更有效获得干扰的估计信息。相较于现有 研究中参数精确的外源模型,本文所考虑的干扰类 型能更符合UAH实际飞行环境中干扰存在频率 不可测的情况。

(2)利用状态与干扰估计信息,结合跟踪误差 等提出抗干扰复合控制策略,获得由跟踪误差和观 测误差动态组成的闭环系统,建立系统满足渐近稳 定和H_∞性能的充分性条件,进而基于线性矩阵不 等式给出新型的自适应律、观测器以及控制器的联 合设计方案。

记号:||•||表示 Euclidean 范数;|•|表示绝对值; A^{T} 表示矩阵 A 转置; A^{-1} 表示矩阵 A 逆矩阵; tr A 表示矩阵 A 的迹; I_n 表示 n 维的单位矩阵; diag($\lambda_1, \lambda_2, ..., \lambda_n$)表示对角线元素分别为 $\lambda_1, \lambda_2, ..., \lambda_n$ 的对角矩阵; $S \subset n T$ 分别表示三角函 数 sin (•)、cos (•)和 tan (•)缩写; \dot{x} 表示向量中元素分 别求导; \tilde{x} 表示误差向量。

1 问题描述

根据文献[23],实际UAH系统可视作简化后的力和力矩产生的六自由度刚体模型,因此UAH 非线性模型可表示如下

 $\begin{cases} \dot{P}(t) = V(t) \\ \dot{V}(t) = g \boldsymbol{e}_{3} + R(t) \boldsymbol{e}_{3} [-g + Z_{\omega} \boldsymbol{\omega}(t) + Z_{col} \boldsymbol{\delta}_{col}(t)] \\ \dot{\boldsymbol{\Theta}}(t) = H(\boldsymbol{\Theta}) W(t) \\ \dot{\boldsymbol{W}}(t) = -JW(t) \times JW(t) + AW(t) + Bu(t) \end{cases}$ (1)

式中:向量 $P(t) = [x(t), y(t), z(t)]^{T}$ 与向量 $V(t) = [u(t), v(t), w(t)]^{T}$ 分别表示在惯性坐标 系下 UAH 的位置与速度;O(t) = $[\phi(t), \theta(t), \psi(t)]^{T}$ 、 $W(t) = [p(t), q(t), r(t)]^{T}$ 分别表示在机体坐标系下无人机的欧拉角与角速 率向量; $u(t) = [\delta_{col}(t), \delta_{lon}(t), \delta_{lat}(t), \delta_{ped}(t)]^{T}$ 为 控制输入;g为重力加速度; $e_{3} = [0, 0, 1]^{T}$ 为酉向 量;J为转动惯量; Z_{w} 、 Z_{col} 、A和B分别表示旋翼拉 力相关的系数,可通过直接测量或系统辨识等方法 得到;R(t)为从机体坐标系到惯性坐标系下旋转 矩阵,具体表示为

$$R(t) =$$

$$H(\Theta) = \begin{bmatrix} 1 & S_{\phi}T_{\theta} & C_{\phi}T_{\theta} \\ 0 & C_{\phi} & -S_{\phi} \\ 0 & S_{\phi}/C_{\theta} & C_{\phi}/C_{\theta} \end{bmatrix}$$
(3)

为了更好地说明本文设计方法,首先将上述非 线性模型线性化,简化部分状态量并考虑外部干扰 获得如下线性UAH系统模型

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + Dd(t) \\ y(t) = Cx(t) \end{cases}$$
(4)

式中: $x(t) = [u, w, q, \theta, v, p, r, \phi]^{T}$ 为UAH系统状态; $u(t) = [\delta_{c}, \delta_{a}, \delta_{c}, \sigma_{r}]^{T}$ 为控制输入, δ_{c} 和 δ_{r} 为主旋翼和尾桨的集中控制, δ_{a} 和 δ_{c} 为UAH的循环控制,用于控制尖端路径平面在纵向和横向上的倾斜度;d(t)为UAH受到的未知时变干扰;y(t)为UAH系统输出;A、B、C、D为已知的UAH适当维数参数矩阵,且满足rank(B)=rank(B,D)。

本文主要工作是设计合适的抗干扰复合控制器,确保式(4)中UAH系统状态能渐近跟踪参考 模型。首先,给定参考模型如下

 $\dot{x}_{m}(t) = A_{m}x_{m}(t) + B_{m}r(t)$ (5) 式中: $x_{m}(t) = [u_{m}, w_{m}, q_{m}, \theta_{m}, v_{m}, p_{m}, r_{m}, \phi_{m}]^{T}$ 为参 考系统的状态,r(t)为有界的输入信号。 A_{m} 和 B_{m} 为已知的矩阵且 A_{m} 满足 Hurwitz条件。

假设1^[22]考虑外源干扰*d*(*t*)由如下参数误 差的非线性系统产生,即

$$\begin{cases} d(t) = V\xi(t) \\ \dot{\xi}(t) = (W + \bar{W})\xi(t) + Ff(\xi(t)) + E\delta(t) \end{cases}$$
⁽⁶⁾

式中: $\boldsymbol{\xi}(t)$ 为系统(6)的状态向量, $\boldsymbol{\delta}(t)$ 为建模误差 满足能量有界, $\boldsymbol{f}(\boldsymbol{\xi}(t))$ 为已知的非线性函数且满 足设定的限制条件。W, V, E为具有适当维数的 已知矩阵。参数误差项 \bar{W} 为适当维数的未知矩阵 且满足 $\|\bar{W}\| \leq \epsilon$ 。

备注1 实际UAH飞行中会受到多种类型的 干扰影响,其中部分可用线性外源模型进行描述, 例如未知恒定负载和幅值相位未知的谐波干 扰^[18]。而式(6)中参数误差下非线性外源干扰模 型,不仅可将线性外源系统作为特殊情况,而且可 描述更具复杂特性的外部干扰^[20]。

备注2 系统(6)中干扰项*d*(*t*)表示UAH受 到的集总干扰。由于实际干扰复杂多变,且难以借 助精确外源系统描述,因而引入参数误差能更好描 述实际的外部干扰。现有研究中外源干扰模型多 数假设为参数精确已知,而对参数误差下非线性外 源干扰模型的研究较少,这是本文研究的主要 动机。

假设 $2^{[24]}$ 存在常数 c, 和任意 $v_1, v_2 \in \mathbb{R}^n$, 非

线性函数 $f(\cdot)$ 满足

$$\left\| f(\boldsymbol{v}_{1}) - f(\boldsymbol{v}_{2}) \right\| \leq c \| \boldsymbol{v}_{1} - \boldsymbol{v}_{2} \|$$

假设 $3^{[19]}$ 对于式(5)中模型参考系统,存在 矩阵 K_1 和 K_2 ,使得 A_m , B_m 满足

 $A_m = A - BK_1, B_m = BK_2$

引理1^[19] 对于任意的正常数α,有

$$X^{\mathrm{T}}Y + Y^{\mathrm{T}}X \leqslant \alpha X^{\mathrm{T}}X + \alpha^{-1}Y^{\mathrm{T}}Y$$

式中X和Y是具有适当维数的常数矩阵。

引理2^[24] 给定适当维数的向量*x*和*y*,有

$$x^{\mathrm{T}} y = \operatorname{tr}(x y^{\mathrm{T}})$$

式中 $tr(xy^{T})$ 为矩阵 xy^{T} 的迹。

为了说明后文闭环系统稳定性,给出如下系统 及相关定义

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{\Lambda}_1 \boldsymbol{x}(t) + \boldsymbol{\Lambda}_2 \delta(t) \\ \boldsymbol{y}(t) = \boldsymbol{\Lambda}_3 \boldsymbol{x}(t) \end{cases}$$
(7)

式中x(t)为系统的状态。 $\delta(t) \in \mathcal{L}_2[0, +\infty)$ 为能 量有界的干扰,y(t)为系统输出, Λ_1 、 Λ_2 和 Λ_3 表示 适当维数的常数矩阵。

定义1^[19]如果满足以下条件,那么系统(7) 是渐近稳定的且满足H_∞性能。

(1) 渐近稳定性:当δ(t)=0时,系统(7)是渐近稳定的。

(2) H_∞性能指标:在零初始条件下,对于任意 的 $\delta(t) \in \mathcal{L}_2[0,\infty)$,系统(7) 中输出信号满足 $\||\mathbf{y}(t)\|_2 < \gamma \|\delta(t)\|_2$,其中 $\gamma > 0$ 表示 H_∞性能增益。

2 观测器与控制器

本节将针对不可测状态和式(6)中外源模型描述的外部干扰,分别设计状态观测器和干扰观测器 来估计状态*x*(*t*)和干扰*d*(*t*)。

根据式(4)中UAH系统,设计状态观测器 $\begin{cases} \dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + D\hat{d}(t) + L_1[y(t) - \hat{y}(t)] \\ \hat{y}(t) = C\hat{x}(t) \end{cases}$

式中: $\hat{x}(t)$ 为系统(4)状态x(t)的估计; $\hat{d}(t)$ 为干 扰d(t)的估计,由待设计的干扰观测器给出; L_1 为 状态观测器的增益; $\hat{y}(t)$ 为状态观测器的输出。接 下来,根据式(4,8),设计自适应干扰观测器^[19]

$$\begin{cases} \hat{d}(t) = V\hat{\xi}(t) \\ \hat{\xi}(t) = \eta(t) - L_2 \hat{x}(t) \\ \dot{\eta}(t) = (W + L_2 DV + \hat{W})\hat{\xi}(t) + Ff(\hat{\xi}(t)) + \\ L_2 A \hat{x}(t) + L_2 Bu(t) \end{cases}$$
(9)

式中: $\eta(t)$ 为辅助变量, $\hat{\xi}(t)$ 为状态 $\xi(t)$ 的估计值, \hat{W} 为参数误差 \bar{W} 的估计值, L_2 为干扰观测器的 增益。

综合式(8~9),定义UAH状态估计误差和干 扰估计误差分别如下

$$\boldsymbol{e}_{\boldsymbol{x}}(t) = \boldsymbol{x}(t) - \hat{\boldsymbol{x}}(t) \tag{10}$$

$$\boldsymbol{e}_{\boldsymbol{\xi}}(t) = \boldsymbol{\xi}(t) - \boldsymbol{\xi}(t) \tag{11}$$

由式(4,8~11),可以得到

$$\dot{\boldsymbol{e}}_{x}(t) = (\boldsymbol{A} - \boldsymbol{L}_{1}\boldsymbol{C})\boldsymbol{e}_{x}(t) + \boldsymbol{D}\boldsymbol{V}\boldsymbol{e}_{\xi}(t) \quad (12)$$
$$\dot{\boldsymbol{e}}_{\varepsilon}(t) = \boldsymbol{W}\boldsymbol{e}_{\varepsilon}(t) + \bar{\boldsymbol{W}}\boldsymbol{\xi}(t) - \hat{\boldsymbol{W}}\hat{\boldsymbol{\xi}}(t) +$$

$$F\tilde{f} + E\delta(t) + L_2 L_1 Ce_r(t)$$
(13)

式中 $\tilde{f}=f(\boldsymbol{\xi}(t))-f(\hat{\boldsymbol{\xi}}(t))_{\circ}$

备注3 式(13)误差动态中 L_1 与 L_2 存在耦合, 难以同时获取两个观测器增益的求解方法。因此, 本文选取观测器增益时,先确定状态观测器增益 L_1 ,确保 $A - L_1C$ 为Hurwitz矩阵,再建立求取干扰 观测器增益 L_2 的方法。

基于上述观测器估计信息设计模型参考抗干 扰复合控制器,定义参跟踪误差如下

$$e_{m}(t) = x(t) - x_{m}(t)$$
(14)
由式(4~5,14),可以得到
$$\dot{e}_{m}(t) = Ax(t) + Bu(t) - A_{m}x_{m}(t) - B_{m}r(t) + Dd(t)$$
(15)

设计抗干扰复合控制器如下

$$\boldsymbol{u}(t) = \boldsymbol{K}_1 \boldsymbol{x}_m(t) + \boldsymbol{K}_2 \boldsymbol{r}(t) + \boldsymbol{K} \left[\hat{\boldsymbol{x}}(t) - \boldsymbol{x}_m(t) \right] - \boldsymbol{K}_3 \hat{\boldsymbol{d}}(t)$$
(16)

根据假设3以及rank(B) = rank(B,D), K_1 , K_2 和 K_3 满足

$$A_m = A + BK_1, B_m = BK_2, D = BK_3$$
 (17)
则闭环系统可改写为

$$\begin{cases} \dot{\boldsymbol{e}}_{m}(t) = (\boldsymbol{A} + \boldsymbol{B}\boldsymbol{K})\boldsymbol{e}_{m}(t) - \boldsymbol{B}\boldsymbol{K}\boldsymbol{e}_{x}(t) + \boldsymbol{D}\boldsymbol{V}\boldsymbol{e}_{\xi}(t) \\ \boldsymbol{z}(t) = \boldsymbol{y}(t) - \boldsymbol{C}\boldsymbol{x}_{m}(t) = \boldsymbol{C}\boldsymbol{e}_{m}(t) \end{cases}$$

(18)

式中z(t)为控制输出。

结合式(12,13,15),可以得到增广闭环系统 如下

$$\begin{cases} \dot{\boldsymbol{e}}(t) = \bar{\boldsymbol{A}}\boldsymbol{e}(t) + T \left[\bar{\boldsymbol{W}}\boldsymbol{\xi}(t) - \hat{\boldsymbol{W}}\boldsymbol{\hat{\xi}}(t) \right] + \\ T \left[F\tilde{\boldsymbol{f}} + E\boldsymbol{\delta}(t) \right] \\ \boldsymbol{z}(t) = C_{\boldsymbol{e}}\boldsymbol{e}(t) \end{cases}$$
(19)

式中系统(19)中状态为

 $\boldsymbol{e}(t) = [\boldsymbol{e}_{m}^{\mathrm{T}}(t), \boldsymbol{e}_{0}^{\mathrm{T}}(t)]^{\mathrm{T}}, \boldsymbol{e}_{0}(t) = [\boldsymbol{e}_{x}^{\mathrm{T}}(t), \boldsymbol{e}_{\varepsilon}^{\mathrm{T}}(t)]^{\mathrm{T}}$ 其他参数矩阵分别表示为

(8)

$$\bar{A} = \begin{bmatrix} \bar{A}_{11} & \bar{A}_{12} \\ 0 & \bar{A}_{22} \end{bmatrix}, \ \bar{A}_{11} = A + BK$$
$$\bar{A}_{12} = \begin{bmatrix} -BK & DV \end{bmatrix}, \ \bar{A}_{22} = \begin{bmatrix} A - L_1C & DV \\ L_2L_1C & W \end{bmatrix}$$
$$C_e = \begin{bmatrix} C & O \end{bmatrix}, \ T = \begin{bmatrix} 0 \\ T_1 \end{bmatrix}, \ T_1 = \begin{bmatrix} 0 \\ I_n \end{bmatrix}$$

3 稳定性分析与控制器设计

本节首先探讨闭环系统(19)满足H_∞性能指标和渐近稳定性,进而给出自适应律、观测器以及控制器的联合设计方案,确保式(4)中UAH系统状态能够渐近跟踪式(5)中所给参考模型的状态。

定义 $\tilde{W} = \bar{W} - \hat{W}$, 选取 Lyapunov 函数如下

~

~

$$V(t) = e^{T}(t) Pe(t) + tr W^{T} QW$$
 (20)
式中 P 和 Q 为待确定的正定矩阵。根据式(19),对

式(20)求导可得 $\dot{V}(t) = e^{\mathrm{T}}(t)(\bar{A}^{\mathrm{T}}P + P\bar{A})e(t) + 2\mathrm{tr}\tilde{W}^{\mathrm{T}}Q\tilde{\tilde{W}} + 2e^{\mathrm{T}}(t)PT[\bar{W}\xi(t) - \hat{W}\hat{\xi}(t)] +$

$$2\boldsymbol{e}^{\mathrm{T}}(t)\boldsymbol{P}T\boldsymbol{F}\boldsymbol{f} + 2\boldsymbol{e}^{\mathrm{T}}(t)\boldsymbol{P}T\boldsymbol{E}\boldsymbol{\delta}(t) \qquad (21)$$

式中 \overline{W} 未知但为常数矩阵,即 $\overline{W}=0$ 。则

.

$$\tilde{\vec{W}} = \dot{\vec{W}} - \dot{\vec{W}} = -\dot{\vec{W}}$$
(22)

接下来, 化间
$$V(t)$$
 甲的部分项
 $\bar{W}\xi(t) - \hat{W}\hat{\xi}(t) = \bar{W}\xi(t) - \bar{W}\hat{\xi}(t) +$
 $\bar{W}\hat{\xi}(t) - \hat{W}\hat{\xi}(t) = \bar{W}e_{\xi}(t) + \tilde{W}\hat{\xi}(t)$ (23)
结合式(21~23),可以得到

$$\begin{split} \dot{V}(t) &= e^{\mathrm{T}}(t)(\bar{A}^{\mathrm{T}}P + P\bar{A})e(t) + 2e^{\mathrm{T}}(t)PTF\tilde{f} + \\ & 2e^{\mathrm{T}}(t)PT\bar{W}e_{\xi}(t) + 2e^{\mathrm{T}}(t)PT\tilde{W}\hat{\xi}(t) + \\ & 2e^{\mathrm{T}}(t)PTE\delta(t) + 2\mathrm{tr}\tilde{W}^{\mathrm{T}}Q\dot{\tilde{W}} = \\ & e^{\mathrm{T}}(t)(\bar{A}^{\mathrm{T}}P + P\bar{A})e(t) + 2e^{\mathrm{T}}(t)PTF\tilde{f} + \\ & 2e^{\mathrm{T}}(t)PT\bar{W}T^{\mathrm{T}}e(t) + 2e^{\mathrm{T}}(t)PT\tilde{W}\hat{\xi}(t) + \\ & 2e^{\mathrm{T}}(t)PTE\delta(t) - 2\mathrm{tr}\tilde{W}^{\mathrm{T}}Q\dot{\tilde{W}} = \\ & e^{\mathrm{T}}(t)(\bar{A}^{\mathrm{T}}P + P\bar{A} + 2PT\bar{W}T^{\mathrm{T}})e(t) + \\ & 2e^{\mathrm{T}}(t)PT\tilde{W}\hat{\xi}(t) + 2e^{\mathrm{T}}(t)PTF\tilde{f} + \end{split}$$

 $2e^{T}(t)PTE\delta(t) - 2tr\tilde{\bar{W}}^{T}Q\tilde{\bar{W}}$ (24) 根据引理1,对任意标量 $\rho > 0$ 可以得到 $2e^{T}(t)PTF\tilde{f} \leq$

$$\frac{1}{\rho} \boldsymbol{e}^{\mathrm{T}}(t) \boldsymbol{P} T \boldsymbol{F} \boldsymbol{F}^{\mathrm{T}} \boldsymbol{T}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{e}(t) + \rho \tilde{\boldsymbol{f}}^{\mathrm{T}} \tilde{\boldsymbol{f}} \quad (25)$$

同时,根据假设2,可以得到

$$\tilde{f}^{\mathrm{T}}\tilde{f} = \left\| f(\xi(t)) - f(\hat{\xi}(t)) \right\|^{2} \leq c^{2} \left\| \xi(t) - \hat{\xi}(t) \right\|^{2} = c^{2} \left\| e_{\xi}(t) \right\|^{2} \leq c^{2} \left\| e(t) \right\|^{2} = c^{2} e^{\mathrm{T}}(t) e(t)$$
(26)

因此

$$2e^{T}(t)PTF\tilde{f} \leqslant$$

$$e^{T}(t)(\rho^{-1}PTFF^{T}T^{T}P + c^{2}\rho I)e(t) \quad (27)$$
再结合式(24,27),则可得
$$\dot{V}(t) \leqslant e^{T}(t)\Phi e(t) + 2e^{T}(t)PTE\delta(t) +$$

$$2e^{T}(t)PT\tilde{W}\hat{\xi}(t) - 2tr\tilde{W}^{T}Q\dot{\bar{W}} \quad (28)$$
式中
$$\Phi = \bar{A}^{T}P + P\bar{A} + 2PT\bar{W}T^{T} + \frac{1}{\rho}PTFF^{T}T^{T}P +$$

 $c^2 \rho I$

设计如下自适应律

$$\dot{\hat{\boldsymbol{W}}} = \boldsymbol{Q}^{-1} \boldsymbol{T}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{e}(t) \hat{\boldsymbol{\xi}}^{\mathrm{T}}(t)$$
(29)

根据引理2,结合式(28,29)得到

$$2e^{\mathrm{T}}(t)PT\tilde{W}\hat{\xi}(t) - 2\mathrm{tr}\tilde{W}^{\mathrm{T}}Q\hat{W} = 2\mathrm{tr}\tilde{W}^{\mathrm{T}}T^{\mathrm{T}}Pe(t)\hat{\xi}^{\mathrm{T}}(t) - 2\mathrm{tr}\tilde{W}^{\mathrm{T}}Q\hat{W} = 2\mathrm{tr}\tilde{W}^{\mathrm{T}}T^{\mathrm{T}}Pe(t)\hat{\xi}^{\mathrm{T}}(t) - 2\mathrm{tr}\tilde{W}^{\mathrm{T}}Q\hat{W} = 2\mathrm{tr}\tilde{W}^{\mathrm{T}}T^{\mathrm{T}}Pe(t)\hat{\xi}^{\mathrm{T}}(t) - 2\mathrm{tr}\tilde{W}^{\mathrm{T}}QQ^{-1}T^{\mathrm{T}}Pe(t)\hat{\xi}^{\mathrm{T}}(t) = 0 \qquad (30)$$

$$\square\mathrm{K},\mathfrak{X}(28) \boxplus - \mathfrak{F}\mathrm{K}\mathrm{\tilde{m}}\mathcal{H}$$

$$\dot{V}(t) \leqslant e^{\mathrm{T}}(t)\Phi e(t) + 2e^{\mathrm{T}}(t)PTE\delta(t) \qquad (31)$$

$$\mathfrak{E} \ensuremath{\mathbb{X}} P = \begin{bmatrix} P_{1} & 0 \\ 0 & P_{0} \end{bmatrix}, \ensuremath{\mathbb{M}}$$

$$\dot{V}(t) \leqslant \begin{bmatrix} e_{m}(t) \\ e_{0}(t) \\ \delta(t) \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \Phi_{11} & P_{1}\bar{A}_{12} & 0 \\ * & \Phi_{22} & P_{0}T_{1}E \\ * & * & 0 \end{bmatrix} \begin{bmatrix} e_{m}(t) \\ e_{0}(t) \\ \delta(t) \end{bmatrix}$$

$$(32)$$

式中

$$\begin{split} \boldsymbol{\Phi}_{11} &= A_{11}P_1 + P_1A_{11} + c^2\rho I \\ \boldsymbol{\Phi}_{22} &= \bar{A}_{22}^{\mathrm{T}}P_0 + P_0\bar{A}_{22} + 2P_0T_1\bar{W}T_1^{\mathrm{T}} + c^2\rho I + \\ &\quad \frac{1}{\rho}P_0T_1FF^{\mathrm{T}}T_1^{\mathrm{T}}P_0 \\ &\quad \exists \Lambda \mathrm{m}\mathrm{F}\mathrm{th}\mathrm{H}_{\infty}\mathrm{th}\mathrm{th}\mathrm{th} \\ &\quad J(T) &= \int_0^T [z^{\mathrm{T}}(t)z(t) - \gamma^2\delta^{\mathrm{T}}(t)\delta(t)]\mathrm{d}t \quad (33) \\ &\quad \exists \mathrm{th}\gamma > 0_{\circ} \; \mathrm{the}\mathrm{s}\mathrm{d}\mathrm{th}\mathrm{S}\mathrm{th}\mathrm{F}, \; \exists T \to \infty \mathrm{th}, \mathrm{m}\mathrm{f} \\ &\quad J(T) &\leqslant V(T) + \int_0^T [z^{\mathrm{T}}(t)z(t) - \gamma^2\delta^{\mathrm{T}}(t)\delta(t)]\mathrm{d}t = \\ &\quad \int_0^T \boldsymbol{\zeta}^{\mathrm{T}}(t)\Psi\boldsymbol{\zeta}(t)\mathrm{d}t \qquad (34) \\ &\quad \exists \mathrm{th}\boldsymbol{\zeta}\mathrm{th}\boldsymbol{\zeta}\mathrm{th} = [e_m^{\mathrm{T}}(t), e_0^{\mathrm{T}}(t), \delta^{\mathrm{T}}(t)]^{\mathrm{T}}_{\circ} \; \mathrm{led}\mathrm{th}\mathrm{s}\mathrm{th} \end{split}$$

$$oldsymbol{\Psi} \!=\! \begin{bmatrix} oldsymbol{\Psi}_{11} & oldsymbol{\Psi}_{12} \ st & oldsymbol{\Psi}_{22} \end{bmatrix}$$

这里矩阵各元素分别表示为

$$\begin{split} \boldsymbol{\Psi}_{11} &= \bar{A}_{11} P_1 + P_1 \bar{A}_{11} + c^2 \rho I + C^{\mathrm{T}} C \\ \boldsymbol{\Psi}_{12} &= \begin{bmatrix} P_1 \bar{A}_{12} & 0 \end{bmatrix}, \boldsymbol{\Psi}_{22} = \begin{bmatrix} \boldsymbol{\Phi}_{22}' & P_0 T_1 E \\ * & -\gamma^2 I \end{bmatrix} \\ \boldsymbol{\Phi}_{22}' &= \bar{A}_{22}^{\mathrm{T}} P_0 + P_0 \bar{A}_{22} + 2 P_0 T_1 \bar{W} T_1^{\mathrm{T}} + \\ &\frac{1}{\rho} P_0 T_1 F F^{\mathrm{T}} T_1^{\mathrm{T}} P_0 + c^2 \rho I \\ \mathrm{th} \mp \| \bar{W} \| \leqslant \epsilon, \mathfrak{K}(34) \mathbb{H} - \mathfrak{F} \mathbb{R} \overline{\pi} \mathfrak{H} \\ &J(T) \leqslant \int_0^{\tau} \boldsymbol{\zeta}^{\mathrm{T}}(t) \bar{\boldsymbol{\Psi}} \boldsymbol{\zeta}(t) \mathrm{d} t \end{split}$$
(35)

式中

$$\bar{\boldsymbol{\Psi}} = \begin{bmatrix} \boldsymbol{\Psi}_{11} & \boldsymbol{\Psi}_{12} \\ * & \boldsymbol{\Psi}_{22}' \end{bmatrix}, \ \boldsymbol{\Psi}_{22}' = \begin{bmatrix} \boldsymbol{\Phi}_{22}'' & P_0 T_1 E \\ * & -\gamma^2 I \end{bmatrix}$$

$$\boldsymbol{\Phi}_{22}'' = \bar{A}_{22}^{\mathrm{T}} P_0 + P_0 \bar{A}_{22} + 2\varepsilon P_0 + c^2 \rho I +$$

$$\frac{1}{\rho} P_0 T_1 F F^{\mathrm{T}} T_1^{\mathrm{T}} P_0$$

当 $T \rightarrow +\infty$ 时, $\bar{\Psi} < 0$ 可确保J(T) < 0成立, 则 $\|\boldsymbol{z}(t)\|_{2}^{2} < \gamma^{2} \|\boldsymbol{\delta}(t)\|_{2}^{2}$ 成立,因而闭环系统(19)满 足设定的H_∞性能。另一方面,当 $\boldsymbol{\delta}(t) = 0$ 时,如果 $\bar{\Psi} < 0$ 可以得到 $\dot{V}(t) < 0$ 。因此, $\bar{\Psi} < 0$ 是确保闭 环系统(19)满足H_∞性能下渐近稳定的充分性 条件。

定义
$$P_{0} = \begin{bmatrix} P_{01} & P_{02} \\ P_{02}^{T} & P_{03} \end{bmatrix},$$
整理 $\Psi_{22}^{\prime} < 0,$ 得
$$\begin{bmatrix} \Pi_{11} & \Pi_{12} & P_{02}E & P_{02}F \\ * & \Pi_{22} & P_{03}E & P_{03}F \\ * & * & -\gamma^{2}I & 0 \\ * & * & * & -\rho I \end{bmatrix} < 0$$
(36)

式中

$$\Pi_{11} = (A - L_1C)^{T} P_{01} + P_{01}(A - L_1C) + 2\varepsilon P_{01} + P_{02}L_2L_1C + C^{T}L_1^{T}L_2^{T}P_{02}^{T} + c^{2}\rho I$$

$$\Pi_{12} = (A - L_1C)^{T}P_{02} + C^{T}L_1^{T}L_2^{T}P_{03} + P_{02}W + P_{01}DV + 2\varepsilon P_{02}$$

$$\Pi_{22} = P_{02}^{T}DV + V^{T}D^{T}P_{02} + W^{T}P_{03} + P_{03}W + 2\varepsilon P_{03} + c^{2}\rho I$$
根据引理1,可以得到
$$P_{02}L_2L_1C + C^{T}L_1^{T}L_2^{T}P_{02}^{T} \leqslant \alpha_0^{-1}P_{02}P_{02}^{T} + \alpha_0C^{T}L_1^{T}L_2^{T}L_2L_1C$$
(37)

式中 α_0 为正的标量。选取 $P_{03} \geqslant \alpha_0 I$,则有

 $\alpha_{0}C^{\mathsf{T}}L_{1}^{\mathsf{T}}L_{2}^{\mathsf{T}}L_{2}L_{1}C \leqslant \alpha_{0}^{-1}C^{\mathsf{T}}L_{1}^{\mathsf{T}}L_{2}^{\mathsf{T}}P_{03}P_{03}L_{2}L_{1}C(38)$ 定义 $Y_{1} = P_{03}L_{2},$ 结合式(37,38), 并整理式(36),得

$$\begin{bmatrix} \boldsymbol{\Pi}_{11}' & \boldsymbol{\Pi}_{12}' & \boldsymbol{P}_{02}\boldsymbol{E} & \boldsymbol{P}_{02}\boldsymbol{F} & \boldsymbol{P}_{02} & \boldsymbol{C}^{\mathrm{T}}\boldsymbol{L}_{1}^{\mathrm{T}}\boldsymbol{Y}_{1}^{\mathrm{T}} \\ * & \boldsymbol{\Pi}_{22} & \boldsymbol{P}_{03}\boldsymbol{E} & \boldsymbol{P}_{03}\boldsymbol{F} & \boldsymbol{0} & \boldsymbol{0} \\ * & * & -\boldsymbol{\gamma}^{2}\boldsymbol{I} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ * & * & * & -\boldsymbol{\rho}\boldsymbol{I} & \boldsymbol{0} & \boldsymbol{0} \\ * & * & * & * & -\boldsymbol{\alpha}_{0}\boldsymbol{I} & \boldsymbol{0} \\ * & * & * & * & * & -\boldsymbol{\alpha}_{0}\boldsymbol{I} \end{bmatrix} < 0$$

式中

$$\boldsymbol{\Pi}_{11}' = (A - L_1 C)^{\mathrm{T}} P_{01} + P_{01} (A - L_1 C) + 2\varepsilon P_{01} + c^2 \rho I$$
$$\boldsymbol{\Pi}_{12}' = (A - L_1 C)^{\mathrm{T}} P_{02} + C^{\mathrm{T}} L_1^{\mathrm{T}} Y_1^{\mathrm{T}} + P_{02} W + P_{01} D V + 2\varepsilon P_{02}$$

利用MATLAB工具箱LMI求解式(39),可以 得到待确定的参数 P_0 和 Y_1 ,则干扰观测器增益 $L_2 = P_{03}^{-1}Y_{10}$

定义 $X_1 = P_1^{-1}$,存在正数 α_1 ,使得 X_1 满足 $X_1X_1 < \alpha_1I$,并对 Ψ 左乘和右乘块对角矩阵diag(X_1, X_1, I, I, I),可得

$$\begin{bmatrix} \Psi_{11}' & -BKX_1 & DV & 0 & 0 \\ * & \alpha_1 \Pi_{11} & X_1 \Pi_{12} & X_1 P_{02} E & X_1 P_{02} F \\ * & * & \Pi_{22} & P_{03} E & P_{03} F \\ * & * & * & -\gamma^2 I & 0 \\ * & * & * & * & -\rho I \end{bmatrix} < 0$$
(40)

式中

$$\Psi_{11}' = X_1 A^{\mathrm{T}} + A X_1 + X_1 K^{\mathrm{T}} B^{\mathrm{T}} + B K X_1 + c^2 \rho X_1 X_1 + X_1 C^{\mathrm{T}} C X_1$$

定义 $Y_2 = KX_1$,对式(40)使用Schur补,可得

$$\begin{bmatrix} \Psi_{11}^{"} - BY_2 \ DV \ 0 \ 0 \ X_1 \ X_1 C^{\mathrm{T}} \\ * \ \alpha_1 \Pi_{11} \ \bar{\Psi}_{23} \ \bar{\Psi}_{24} \ \bar{\Psi}_{25} \ 0 \ 0 \\ * \ * \ \Pi_{22} \ P_{03} E \ P_{03} F \ 0 \ 0 \\ * \ * \ * \ * \ - \gamma^2 I \ 0 \ 0 \ 0 \\ * \ * \ * \ * \ * \ - \rho I \ 0 \ 0 \\ * \ * \ * \ * \ * \ * \ - \rho I \ 0 \\ = \ * \ * \ * \ * \ * \ * \ - I \end{bmatrix} < 0$$

$$(41)$$

式中

 $\Psi_{11}'' = X_1 A^{\mathrm{T}} + A X_1 + Y_2^{\mathrm{T}} B^{\mathrm{T}} + B Y_2, \bar{\Psi}_{23} = X_1 \Pi_{12}$ $\bar{\Psi}_{24} = X_1 P_{02} E, \ \bar{\Psi}_{25} = X_1 P_{02} F$

由
$$X_1X_1 < \alpha_1 I$$
成立可得线性矩阵不等式

$$\begin{bmatrix} -\alpha_1 I & X_1 \\ X_1 & -I \end{bmatrix} < 0 \tag{42}$$

对 式 (42) 使 用 Schur 补 可 得 $-\alpha_1 I + X_1 X_1 < 0$, 即 $X_1 X_1 < \alpha_1 I_{\circ}$

综上,如果利用MATLAB的LMI工具箱求解 式(41,42),可得到 X_1 、 Y_2 ,则可进而求得控制器增 益 $K = Y_2 X_1^{-1}$ 。

基于上述分析步骤,本文基于自适应观测器的 抗干扰复合控制器设计过程可以归纳为以下定理。

定理1 针对式(4)中的UAH系统,考虑式 (6)中具有参数误差的非线性外源干扰模型,给定

(39)

参数 $\gamma > 0$,设计式(8)中状态观测器,式(9)中干扰 观测器,式(29)中自适应律和式(16)中抗干扰复 合控制器。如果以下步骤可行,则式(19)中闭环系 统渐近稳定且满足 H_{∞} 性能指标,即UAH系统能 够跟踪式(5)中参考模型。

步骤1 选取状态观测器增益矩阵 L_1 使得 $A - L_1C$ 是Hurwitz矩阵。

步骤2选取自适应律参数矩阵 **Q**>0,并且 通过 LMI工具箱求解式(39,41,42),可以得 矩阵**P**。

步骤3 存在矩阵 P_{01} 、 P_{02} 、 P_{03} 和 Y_1 ,以及常数 α_0 ,使得式(40)和如下LMI成立

$$\boldsymbol{P}_{0} = \begin{bmatrix} \boldsymbol{P}_{01} & \boldsymbol{P}_{02} \\ * & \boldsymbol{P}_{03} \end{bmatrix} > 0, \boldsymbol{P}_{03} > \alpha_{0} \boldsymbol{I} \qquad (43)$$

则干扰观测器增益为 $L_2 = P_{03}^{-1}Y_{10}$

步骤4 存在矩阵 $X_1 > 0$ 和 Y_2 ,常数 $\alpha_1 > 0$, 使得式(41,42)成立,则控制器增益为 $K = Y_2 X_1^{-1}$ 。

证明:基于上述分析,在式(29,41,42)成立下, 式(20)中Lyapunov函数导数小于零,根据定义1,式 (19)中闭环系统满足H。性能且渐近稳定。因此,根 据步骤1~4,可以得到状态观测器、干扰观测器和状 态反馈控制器的增益以及自适应律参数矩阵。

证明完成。

4 仿真结果

为了验证本文所提方法的有效性,基于文献 [21]中UAH模型参数并采用MATLAB/Simulink 仿真软件,对所提出的控制方案进行仿真验证。 UAH系统和参考模型参数分别如下

A =	-0.0286	0.020 5	7.9700	-32.0000	-0.0637	0.2290	-0.2570	0	
	0.004 6	-0.2610	2.2500	-3.2800	-0.0257	-0.3790	2.1900	1.600 0	
	0.004 7	0.200 0	-0.7500	0	0.0118	-0.9200	0.024 4	0	
	0	0	0.9990	0	0	0	0.049 9	0	
	0.077 9	0.005 9	-1.0300	0.164 0	-2.3100	-8.2900	-1.6400	32.000 0	
	0.007 9	0.009 5	-0.1340	0	-0.0500	-2.7000	-0.6620	0	
	0.003 9	0.8000	0.4130	0	-0.0049	-1.0500	-0.4000	0	
	0	0	-0.0510	0	0	1.0000	0.103 0	0	
			0.4350	0.576 0	-0.1140	-0.0009			
			-4.2700	0.057 5	-0.0250	0.001 2			
			0.007 2	-0.1010	-0.0900	-0.0018			
		R —	0	0	0	0			
		<i>Б</i> —	-0.1580	0.136 0	0.4910	0.2820			
			-0.0438	-0.0600	0.647 0	0.0800			
		0.0800	0.009 4	0.200 0	-0.0455				
			L O	0	0	0			
	-0.2001	1.6852	27.3757	-2.0518	0.0027	-0.3198	1.9807	7.5632]
	-2.1889	-4.2294	6.1810	80.0898	0.050 5	-1.6658	-0.9871	-16.8332	
	0.038 2	-0.0483	-3.2832	-4.2863	0.0237	0.238 1	-0.1812	-0.9619	
A =	0	0	0.9990	0	0	0	0.049 9	0	
Λ _m —	-0.9660	-0.3953	27.160 8	69.475 9	-1.4895	15.896 2	3.809 6	28.4898	
	-0.0160	-0.1331	-0.3950	-0.2276	0.030 9	-1.2485	-0.1559	-1.7907	
	0.297 8	1.0920	-5.9466	-17.9053	-0.2152	-8.1898	-1.5493	1.208 8	
	0	0	-0.0510	0	0	1.000 0	0.1030	0	
			-0.0685	-0.0515	0.009 2	0.0700			
			0.013 3	0.0067	-0.0867	0.080 0			
		0.014 1	0.029 9	0.010 5	-0.0390				
		D =	0	0	0	0			
			-0.0418	-0.0482	0.075 9	-0.0100			
			0.032 3	0.0177	0.033 8	-0.0700			
			0.0198	0.0202	-0.0034	-0.0210			
			0	0	0	0			

	0.4350	0.5760	
	-4.2700	0.057 5	
	0.007 2	-0.1010	
в —	0	0	
D_m —	-0.1580	0.136 0	,
	-0.0438	-0.0600	
	0.080 0	0.0094	
	0	0	

设定参考模型有界输入信号 $r(t) = [r_1(t) r_2(t)]^T$

$$r_1(t) = \begin{cases} -1 & 0 \leqslant t < 10 \\ -0.3 & t \ge 10 \end{cases}$$

外部干扰 *d*(*t*)由式(6)中非线性外源干扰模型描述,设定其参数矩阵分别如下

$$V = \begin{bmatrix} 1.0 & 1.0 & 0.5 & -0.7 \\ 0.5 & 1.0 & 0 & 1.0 \\ 1.0 & 0 & 1.0 & 0.5 \\ 0.5 & 1.0 & 0.5 & 0.7 \end{bmatrix}, E = \begin{bmatrix} 0.1 & 0 \\ -0.1 & 0.1 \\ 0 & 0.1 \\ 0 & -0.02 \end{bmatrix}$$
$$W = \begin{bmatrix} 0 & 0.4 & 0 & 0 \\ -0.4 & 0 & 0 & 0 \\ 0 & 0 & 0 & -0.6 \\ 0 & 0 & 0.6 & 0 \end{bmatrix}$$
$$F = \text{diag}(0.01, 0.01, 0.01, 0.02)$$

而参数误差项 🕢 的范数上界设定为

 $\epsilon = 0.08$ 设定 \overline{W} 自适应律参数为

Q = diag(150, 150, 150, 150)

非线性函数设定为

$$f(\boldsymbol{\xi}(t)) = \frac{1}{2}|\boldsymbol{\xi}(t) + 0.05| - \frac{1}{2}|\boldsymbol{\xi}(t) - 0.05|$$

能量有界的建模误差 $\delta(t) = [\delta_1(t), \delta_2(t)]^T$ 为 $\delta_1(t) = e^{-0.5t} \sin t, \ \delta_2(t) = e^{-0.5t} \cos t$

且 UAH 和外源干扰系统初始状态分别为 $x_0 = [0.33, 0.33, 0.17, 0.03, 0.67, 0.17, 0.17, 0.03]^T$ $d_0 = [0.37, 0.25, -0.15, 0.18]^T$

根据定理1,选取性能参数γ=3,通过MAT-LAB的LMI工具箱求解状态观测器、干扰观测器 以及控制器增益分别如下

1.162133.664 0 0.0202 -0.0247-0.6640 7.60350.0171 0.7366 52.7567 -14.25715.19912.3774 -13.5724 -6.4173 -2.00930.0951 -40.500113.202 0 15.434 0 20.1933 -1.2930 1.6109 0.58820.3860 0.4433 -5.6316-0.3521-0.35091.91310.0247 -1.7366105.1933 8707.5 - 1065.2 - 4290.9 1253.61225.2 - 44.4 405.5 - 737.3-10.6 130.9 -217.12852.4 --1475.3 - 1238.3492.6 396.2 2859.1 226.2 -1447.1427.0 403.8 -431.7 407.3 -244.05015.8 276.3 -2581.4677.5 709.3 -102.0 395.5 -440.643.2 170.9 339.3 -597.482.1 1.3111.9 529.9 -498.4271.5 $-1\,003.4$ 2 643.8 -282.2-16.9-309.0-1580.9K =74.5 13.6-60.20.1828 - 63.8-88.0-89.1-334.7-593.3 -1940.0 -3868.1 8100.2 -1331.4 -155.9 -1186.7 -5342.6

仿真结果如图 1~14 所示。外部干扰和干扰 估计曲线如图 1~4 所示。由图 1可看出,针对参数 误差下非线性外源干扰模型,所设计的自适应干扰 观测器能有效估计干扰信息。而 UAH 状态估计 误差如图 5,6 所示。由图 5,6 可见,所设计的状态 观测器可准确估计 UAH 状态信息。图 7~9 给出 UAH 的速度和参考模型的速度对比曲线,由图 7~ 9 可见本文抗干扰复合控制器能保证 UAH 按照预 期的速度飞行。图 10~12 给出 UAH 角速率和参 考模型的角速率对比曲线,由图 10~12 表明在本 文所提出的控制方案作用下,期望角速率能够被渐

Fig.2 Curves of disturbance 2 and its estimation

Fig.3 Curves of disturbance 3 and its estimation

Fig.4 Curves of disturbance 4 and its estimation

Fig.7 Curves of velocity of UAH and reference model 1

图 7

UAH 速度与参考模型曲线1

Fig.8 Curves of velocity of UAH and reference model 2

图 10 UAH 角速度与参考模型曲线1

Fig.10 Curves of angular rate of UAH and reference model 1

Fig.11 Curves of angular rate of UAH and reference model 2

Fig.12 Curves of angular rate of UAH and reference model 3

Fig.13 Curves of roll angle of UAH and reference model

Fig.14 Curves of pitch angle of UAH and reference model

近跟踪。图 13、14给出 UAH 和参考模型的横滚角 和俯仰角的对比曲线,由图 13、14 可见能够实现对 参考模型的有效跟踪。

5 结 论

本文研究了复杂外部干扰影响下UAH系统 的模型参考跟踪控制问题,建立基于自适应干扰观 测器的模型参考跟踪控制设计方案。首先,根据干 扰特性对其建模,提出了参数误差下的非线性外源 系统模型,并设计自适应干扰观测器和状态观测器 分别估计干扰和状态信息。其次,设计抗干扰复合 控制器,获得了由跟踪误差和估计误差动态组成的 闭环系统。然后,分析闭环系统稳定性,建立满足 给定H_∞性能下自适应律、观测器增益以及控制器 增益的联合求解方案。最后,仿真结果验证了本文 所提控制方案的有效性。

参考文献:

 [1] 盛守照,王道波,姜斌,等.新型无人直升机纵横向 无姿态反馈自适应控制[J].控制与决策,2010,25
 (8):1215-1219.

SHENG Shouzhao, WANG Daobo, JIANG Bin, et al. Longitudinal and lateral adaptive control without attitude feedback for a new prototype unmanned helicopter[J]. Control and Decision, 2010, 25(8): 1215-1219.

- [2] 黄益新,徐锦法.无人直升机目标定位系统设计[J]. 南京航空航天大学学报,2018,50(2):251-257.
 HUANG Yixin, XU Jinfa. Target localization system of unmanned helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 251-257.
- [3] CASTILLO C L, ALVIS W, CASTILLO E M, et al. Small scale helicopter analysis and controller design for non-aggressive flights[C]//Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Waikoloa, USA: IEEE, 2005: 3305-3312.
- [4] 刘勇,王新民,余翔.基于LQR的直升机悬停控制律设计与仿真[J].计算机测量与控制,2008,16(5):

670-672.

LIU Yong, WANG Xinmin, YU Xiang. Design and simulation of hovering control law for a helicopter based on LQR[J]. Computer Measurement & Control, 2008, 16(5): 670-672.

- [5] WANG Xiafu, CHEN You, LU Geng, et al. Robust attitude tracking control of small-scale unmanned helicopter[J]. International Journal of Systems Science, 2015, 46(8): 1472-1485.
- [6] RAPTIS I A, VALAVANIS K P, VACHTSEVA-NOS G J, et al. Linear tracking control for small-scale unmanned helicopters[J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 995-1010.
- [7] 鲜斌,林嘉裕.基于强化学习的小型无人直升机有限时间收敛控制设计[J].控制与决策,2020,35(11): 2646-2652.

XIAN Bin, LIN Jiayu. Finite-time control based on reinforcement learning for a small- size unmanned helicopter[J]. Conrtol and Decision, 2020, 35(11): 2646-2652.

- [8] 鲜斌,李宏图.分布式多无人机的时变编队非线性控制设计[J].控制与决策,2021,36(10):2490-2496.
 XIAN Bin, LI Hongtu. Time-varying formation non-linear control of distributed multiple UAVs[J]. Control and Decision, 2021, 36(10): 2490-2496.
- [9] 杨静雯,李涛,杨欣,等.基于短暂丢失参考信号预测的无人直升机轨迹跟踪控制[J].南京航空航天大学报,2022,54(6):1030-1039.
 YANG Jingwen,LI Tao,YANG Xin, et al. Trajec-

tory tracking control for unmanned aerial helicopter via predictions of transiently lost reference signals[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(6): 1030-1039.

- [10] SHEN Suiyuan, XU Jinfa. Adaptive neural networkbased active disturbance rejection flight control of an unmanned helicopter[J]. Aerospace Science and Technology, 2021, 119: 107062.
- [11] WAN Min, CHEN Mou, YONG Kenan. Adaptive tracking control for an unmanned autonomous helicopter using neural network and disturbance observer[J]. Neurocomputing, 2022, 468: 296-305.
- [12] XIA Yuanqing, SHI Peng, LIU Guoping, et al. Active disturbance rejection control for uncertain multivariable systems with time-delay[J]. IET Control Theory and Applications, 2007, 1(1): 75-81.
- [13] HAN Jingqing. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
- [14] MARINO R, SANTOSUOSSO G L. Global compensation of unknown sinusoidal disturbances for a class of nonlinear non-minimum phase systems[J].

IEEE Transactions on Automatic Control, 2005, 50 (11): 1816-1822.

- [15] YANG Hongjiu, CHENG Lei, XIA Yuanqing, et al. Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind[J]. IEEE Transactions on Control Systems Technology, 2018, 26(4): 1400-1405.
- [16] WANG Ban, YU Xiang, MU Lingxia, et al. Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances[J]. Mechanical Systems and Signal Processing, 2019, 120: 727-743.
- [17] YAN Yunda, ZHANG Chuanlin, LIU Cunjia, et al. Disturbance rejection for nonlinear uncertain systems with output measurement errors: Application to a helicopter model[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3133-3144.
- [18] WANG Xiangyu, HAN Ling, LIU Jiyu. Attitude and height tracking control of unmanned helicopters with disturbances via disturbance observer-based composite dynamic surface control[J]. Transactions of the Institute of Measurement and Control, 2021, 43(14): 3294-3307.
- [19] CHEN Mou, LI Yankai. Model reference resilient control for the helicopter with time-varying disturbance[J]. International Journal of Robust and Nonlinear Control, 2019, 29(15): 5095-5117.
- [20] WANG Hongdu, WU Huaining, GUO Lei, et al. Nonlinear disturbance observer-based control for a class of nonlinear systems[C]//Proceedings of the 35th Chinese Control Conference. Chengdu, China: [s.n.], 2016: 2952-2956.
- [21] QI Shengbo, WANG Hongdu, WU Huaining, et al. Composite anti-disturbance control for nonlinear systems via nonlinear disturbance observer and dissipative control[J]. International Journal of Robust and Nonlinear Control, 2019, 29(12): 4056-4068.
- [22] CHEN Linbo, LI Tao, MAO Zehui, et al. Resilient tracking control for unmanned helicopter under variable disturbance and input perturbation[J]. International Journal of Control, Automation and System, 2022, 20(1): 147-159.
- [23] FANG Xing, WU Aiguo, SHANG Yujia, et al. Robust control of small-scale unmanned helicopter with matched and mismatched disturbances [J]. Journal of the Franklin Institute, 2016, 353(18): 4803-4820.
- [24] HAN Jian, ZHANG Huaguang, WANG Yingchun, et al. Anti-disturbance control for nonlinear system via adaptive disturbance observer[J]. International Journal of Robust and Nonlinear Control, 2017, 27(12): 2121-2144.