DOI:10.16356/j.1005-2615.2023.04.010

低压涡轮导向器开度对变循环发动机的影响

何雨婷,王英锋

(南京航空航天大学能源与动力学院,南京 210016)

摘要:建立了变循环发动机整机模型并对可变几何低压涡轮特性进行修正,研究了低压涡轮导叶开度从一6°~6°时对各部件以及发动机整体性能的影响。结果表明:随低压涡轮导向器角度变大,低压涡轮进口折合流量增大, 不论低压涡轮导向器开大或关小,高、低涡轮效率均下降;随导叶开度增大,高压涡轮膨胀比增大,高压轴功率增 大,高压压气机(High pressure compressor, HPC)与核心机驱动风扇级(Core driven fan stage, CDFS)压比增大; 双外涵模式下涡轮导叶角度为0°时单位推力最大,单外涵模式下涡轮角度为一1°时单位推力最大。 关键词:变循环发动机;变几何低压涡轮;导叶开度;涡轮效率;单位推力;单位耗油率 中图分类号:V231 文献标志码:A 文章编号:1005-2615(2023)04-0651-07

Influence of Low Pressure Turbine Guide Opening on Variable Cycle Engine

HE Yuting, WANG Yingfeng

(College of Energy and Power Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China)

Abstract: The variable cycle engine model is established and the variable geometry low pressure turbine characteristics are modified. The results show that the reduced flow rate at the inlet of the low pressure turbine increases with the increase of the angle of the low pressure turbine deflector. With the increase of guide vane opening, the expansion ratio of high pressure (HP) turbine, the power of HP shaft, and the pressure ratio of high pressure compressor(HPC) to core driven fan stage(CDFS) increase. The specific thrust reaches its maximum when the turbine guide vane angle is 0° in double bypass mode and the turbine angle is -1° in single bypass mode, respectively.

Key words: variable cycle engine; variable geometry low pressure turbine; guide vane opening; turbine efficiency; specific thrust; specific fuel consumption

随着现代航空技术的不断发展,飞机性能的提 高使得对发动机的性能有着更高的要求。针对现 代飞机多任务多环境下的设计要求,在不同的飞机 用途与结构中,对于发动机的要求也趋于多样化。 对下一代战斗机来说,大空域、宽速域、高隐身、高 机动是发展趋势,对宽速域高机动条件下的进发匹 配和在不同飞行条件下的经济性也有了进一步的 要求。20世纪60年代,美、英、法和前苏联开始研 制超声速客机。在此背景下,美国GE公司提出变 循环发动机(Variable cycle engine, VCE)的概念。 与常规发动机相比,变循环发动机具有多个几何可 变部件,通过调整几何可变部件的外形尺寸来改变 发动机的热力循环参数,使发动机在不同飞行条件 下采用不同的工作模式,从而最大限度地兼顾超声 速飞行的高推力性能和亚声速巡航低耗油率的要 求,能够适应于各种情况下的任务需求。在变循环 发动机中,可变几何涡轮是其中重要的可调部件, 通过调节涡轮导向器角度调节自身流通能力,从而

收稿日期:2022-11-25;修订日期:2023-01-13

通信作者:王英锋,男,副教授, E-mail: wyf12345678@nuaa.edu.cn。

引用格式:何雨婷,王英锋.低压涡轮导向器开度对变循环发动机的影响[J].南京航空航天大学学报,2023,55(4):651-657. HE Yuting, WANG Yingfeng. Influence of low pressure turbine guide opening on variable cycle engine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(4):651-657.

调节发动机的气动热力状态^[1]。

20世纪开始,美国、英国、日本等发达国家对变 几何涡轮在变循环发动机上的应用开展了深入的 研究^[2-3], VCTEF731-2、GE21、HYPER90和COPE 等变循环验证机上都使用了变几何涡轮。20世纪 60年代,NASA刘易斯研究中心开始对变几何涡轮 进行研究^[4]。罗罗公司通过试验证明改变涡轮导向 器安装角可以有效地调节涡轮流量^[5]。GE公司将 TFE731-2涡扇发动机改为变循环发动机,进行了 高空模拟试验,验证了变几何涡轮技术的优势。 Meyer 等^[6]研究表明可变几何涡轮可以在较宽的工 作范围内改善发动机比推力及降低耗油率。较国 外研究进程来说国内对于变几何涡轮的研究虽然 开始较晚,但近年来也得到广泛关注。贾小权等[7] 通过RANS方法并结合SST湍流模型,研究了不同 可调导叶角度下低压涡轮级气动性能变化,结果表 明可调导叶旋转角度会明显改变导叶叶顶及动叶 通道内的流动情况,角度变大会增加涡轮级流量, 较小动叶进口相对气流角,使动叶压力面出现明显 分离。高杰等^[8]针对大子午扩张变几何涡轮在可调 静叶转动时旋转轴端严重恶化端区流场的问题,提 出了在可调静叶的机匣端部应用小翼结构并减少 叶端间隙的流动。

综上所述,变几何涡轮在新一代战斗机以及超 声速运输机上有着广泛的应用前景。目前国内对 于变几何涡轮的研究主要集中在可调导叶的气动 设计^[9-11],导叶调节角度对流场的影响以及涡轮导 叶变化对涡轮性能影响的数值仿真^[2,12]等方面,对 于变几何涡轮对变循环发动机在不同模式下的性 能影响研究较少。本文通过改变变几何低压涡轮 的导叶开度从而控制涡轮流通面积,研究了变几何 低压涡轮对变循环发动机在单、双外涵地面工作状 态下经济性及动力性的影响。

1 数学模型

1.1 变循环发动机整机模型

本文研究的变循环发动机结构如图1所示,该 模型包括风扇、核心机驱动风扇级(Core drive fan stage, CDFS)、高压压气机(High pressure compressor,HPC)、高低压涡轮、尾喷管,以及模式选择活 门(Mode selection valve, MSV)、前可变涵道引射 器(Front variable area bypass injector, FVABI)、后 可变涵道引射器(Rear variable area bypass injector, RVABI)等可变几何部件。该变循环发动机具 有两种工作模式,当MSV打开时,以双外涵模式 工作,气流流经风扇后进入外涵道和内涵道,此时 变循环发动机处于低功率、高经济性状态,适合于 在亚声速巡航状态使用;当MSV关闭时,以单外 涵模式工作,气流全部流经内涵道,此时发动机的 推力变大,适用于在超声速巡航时使用。在建立模 型时,将变几何部件用分流器和混合器的形式进行 简化,MSV和FVABI简化模型如图2所示。

风 扇 → 流 器	 ▶ 外涵道 ▶ 内涵道 	C D F S 器	►CDFS涵道► 混 合 ►内涵道 → 器					
(a) N	ASV	((b) FVABI					
冬	2 MSV和	FVABI≇	吉构简图					
Fig.	2 MSV ar	d FVABI	structures					

本文对发动机进行通用模块化建模,将发动机 热力计算过程封装在模块中,将上游部件的输出作 为输入,通过内部计算程序计算后输出参数,模块 参数计算原理如图3所示,系统采用牛顿-拉夫森 迭代法进行计算。本文所建立的变循环发动机需

上游部件特性输入 气动热力学方程 留3 部件模块示意图 Fig.3 Component module diagram 要给出进口流量、β_Fan、β_CDFS、β_HPC、副外涵 与内涵涵道比、CDFS涵道比、高压涡轮膨胀比 (PR_HPT)、低压涡轮膨胀比(PR_LPT)、高压轴 转速、低压轴转速共10个参数,即可以对发动机进 行热力计算,计算其性能参数和各部件参数。所给 的参数是否匹配发动机工作点参数还需要通过发 动机的共同工作方程来检验,检验方程如下:

(1) 风扇进口流量平衡

$$\frac{W_{c_{z_{in}}} - W_{cCalc_{z_{in}}}}{W_{c_{z_{in}}}} = 0 \tag{1}$$

(2) CDFS进口流量平衡

$$\frac{W_{c_{2lin}} - W_{cCalc_{2lin}}}{W_{c}} = 0 \tag{2}$$

(3) 高压压气机进口流量平衡

(4

$$\frac{W_{c_{25in}} - W_{cCalc_{25in}}}{W_{c_{75in}}} = 0 \tag{3}$$

) 高压涡轮进口流量平衡
$$\frac{W_{l_{4lin}} - W_{lCalc_{4lin}}}{W_{l_{4lin}}} = 0$$
(4)

(5) 低压涡轮进口流量平衡
$$\frac{W_{l_{tim}} - W_{lCalc_{tim}}}{W_{l_{tim}}} = 0$$
(5)

(6) 混合室进口流量平衡

$$\frac{p_{\rm s1} - p_{\rm s2}}{p_{\rm s1}} = 0 \tag{6}$$

(7)转子扭矩平衡

$$\sum_{\mathbf{rq}} T_{\mathbf{rq}} = 0 \tag{7}$$

(8) 喷管进出口流量平衡
$$\frac{W_{\text{noz}_{a}} - W_{\text{nozcalc}_{aat}}}{W_{\text{noz}}} = 0$$
(8)

式中: W_c 为风扇、CDFS、高压压气机部件特性图 上查得的进口折合流量; W_{cCalc} 为计算所得各压气 机部件进口折合流量; W_1 为涡轮部件特性图查得 进口折合流量; W_{1Calc} 为计算所得涡轮进口折合流 量; p_{s1} 与 p_{s2} 分别为混合室前外涵与内涵出口静压; ΣT_{rq} 为高低压转子扭矩之和; W_{noz_a} 为喷管进口质 量流量; $W_{nozealc_w}$ 为喷管出口计算质量流量。

对于本文所建立的变循环发动机结构,共需要 10个检验方程,分别为风扇进口流量平衡、CDFS 进口流量平衡、高压压气机进口流量平衡、副外涵 与CDFS涵道后混合室进口静压平衡、副外涵与内 涵出口混合室静压平衡、高压涡轮进口流量平衡、 低压涡轮进口流量平衡、高压转子扭矩平衡、低压 转子扭矩平衡和喷管进出口流量平衡。

1.2 可变几何低压涡轮特性图

在复杂的飞行条件下,发动机的工作状态也会 有较大的改变,涡轮作为发动机中输出功的部件, 它的调节能力对于变循环发动机整体性能来说十 分重要^[13]。旋转涡轮导向器叶片是调节涡轮的有 效方法之一,在变循环发动机设计方案中也得到了 广泛的应用。

本文通过调节低压涡轮第一级导向器叶片,可 以使流量相似参数在很大范围内变化,从而调节在 不同飞行条件下发动机涡轮和压气机的工作匹配 性。在转动导向器叶片时,导向器出口气流角和反 力度发生变化,在整个叶高上基元级速度三角形产 生变形,因此级效率降低,在导向器角度关小时,气 流对涡轮转子的迎角增大,同时反力度减小,因而 效率下降更为明显^[14]。

可变几何涡轮与定几何涡轮在建模时的不同 之处在于导向器开度变化时模型对涡轮特性图选 择的变化。本文参考文献[15]对变几何低压涡轮 进行特性修正,低压涡轮导向器开度与折合流量和 效率的关系如图4所示。假设涡轮导向器开度变化 只影响其喉道面积和效率,令设计点状态下低压涡 轮导叶开度为0°,当开度为负值时,导向器流通面积 减小,开度为正值时,导向器流通面积增大,而无论 导向器开大或者关小,效率都小于设计点效率。

Fig.4 Effect of turbine guide vane opening on efficiency/ flow

以变几何低压涡轮设计点为基准,对导向器开 度不同的涡轮特性图进行插值,在建模过程中通过 导向器角度来查找不同的特性图进行计算。图5

为涡轮导向器面积分别为130%、100%、70%时的 涡轮特性图^[16],在计算时通过对面积进行插值得 到其他面积条件下的特性图,以满足在不同开度下 的计算,插值函数如式(9,10)所示。结合图5可 知,导向器面积为130%时对应开度约为4.5°,面积 为70%时对应开度约为-9.2°。

$$W_{a} = f(\alpha, N_{L_{cor}}, \pi)$$
(9)

$$\eta = f(\alpha, N_{\mathrm{L}_{\mathrm{m}}}, \pi) \tag{10}$$

式中: W_a 为折合流量, η 为效率, α 为导向器角度,

N_{Lear}为低压转子折合转速,π为低压涡轮膨胀比。

2 计算结果及分析

2.1 低压涡轮导向器开度对双外涵模式的影响

本文选取地面工作点作为该变循环发动机双 外涵设计点工作条件,设计点主要参数如表1所 示,其中SFC表示单位耗油率。在调节过程中,通 过改变燃油流量保持高压折合转速不高于100%, 涡轮前总温不超过1800K,导叶调节范围为 -6°~6°。

表1 双外涵模式设计点主要参数

$W/(\mathrm{kg}\cdot\mathrm{s}^{-1})$	$B_{\rm FAN}$	$B_{\rm CDFS}$	$\pi_{ m FAN}$	$\pi_{ m CDFS}$	$\pi_{ ext{HPC}}$	$\pi_{ ext{HPT}}$	$\pi_{ m LPT}$	$\eta_{ m H}$	$\eta_{ m L}$	F_n/N	$SFC/(kg \cdot s^{-1} \cdot N^{-1})$
100	0.385 2	0.405 2	3.4	1.25	6	2.72	2.26	0.91	0.9	70148.45	0.067

低压涡轮导向器开度增大时,高压涡轮功率增 大,从而使得高压轴折合转速n_{H.cor}(图6,其中n_{L.cor} 为低压轴折合转速)增大,n_{H.cor}不断增大,CDFS与 高压压气机压比增大,由于设置高压轴转速限制 值,在达到100%时通过减少核心机通过流量维持 轴转速,涵道比的变化如图7所示,其中BPR_{FAN}和 BPR_{CDFS}分别为风扇涵道比和CDFS涵道比。流 量变化如图8所示,随着核心机流量增加,涵道比 降低。由于高压轴功率的增大,核心机的压比升 高,图9给出了压缩部件的压比变化,由于高压轴 折合转速的限制,在开度大于0°后 CDFS和 HPC 压比增大的趋势减弱,趋于平稳。部件效率如图 10所示,由于涡轮效率降低,涡轮做功能力降低, 为了保持压气机部件与涡轮部件的功率平衡条件, 一方面压气机部件的效率有所降低,另一方面适当 增加燃烧室供油量,从而使涡轮前温度上升。

风扇进口折合流量如图 11 所示,在-6°~0°变 化范围内,风扇进口折合流量增大,0°~6°变化范围 内,风扇进口流量有所降低。当导向器开度小于0°

时,推力随面积增大而增大,当导向器开度继续增 大时,由于受到转速限制,CDFS和HPC的进口流 量降低(图12),低压轴效率进一步下降,导致推力 降低。由图13可知,当导向器开度为0°时,推力最 大而单位燃油消耗率最低。由于低压轴效率不断 下降,做功能力降低,低压轴驱动部件即风扇的压 比也逐渐减小,为保持总增压比变化波动较小,需 要增大核心机压比,由于CDFS的压比增加范围较 小,所以主要影响部件为高压压气机。随导向器开 度增大,高压涡轮出口压力降低,增大了高压涡轮 膨胀比,提高了高压涡轮功率,同样,此时低压涡轮

Fig.13 Changes of specific thrust and specific fuel consumption rate

小,由于调节过程中尾喷管喉道面积不变,推力也 会减小,耗油率上升。

2.2 低压涡轮导向器开度对单外涵模式的影响

该变循环发动机单外涵地面设计点主要参数 如表2所示。变几何涡轮导叶角度的改变直接影 响涡轮的流通能力,从而导致涡轮内及发动机整机 的气动性能发生改变。从图14中可以看出,随着 导向器开度的增大,涡轮喉部通过的流量基本呈线 性增长,由于单外涵模式下风扇后流量全部流入核 心机,低压涡轮进口流量较大。

表2 单外涵设计点主要参数

Table 2 Main design point parameters of single bypass model)de
---	-----

$W/(\mathrm{kg} \cdot \mathrm{s}^{-1})$	$B_{\rm CDFS}$	$\pi_{ m FAN}$	$\pi_{ m CDFS}$	$\pi_{ m HPC}$	$\pi_{ ext{HPT}}$	$\pi_{ m LPT}$	$\eta_{ m H}$	$\eta_{ m L}$	F_n/N	$SFC/(kg \cdot N^{-1} \cdot s^{-1})$
100	0.646 3	3.78	1.18	6	2.685	2.013	0.91	0.9	79 925.65	0.075 8

由于导向器调节时流量的增加远大于效率的 下降,由涡轮特性计算公式可知,此时涡轮功增大, 从而使发动机获得更大的推力。图15给出角度变 化时核心机流量及CDFS涵道比变化趋势,当导向 器调节角度为负值时,随着导向器开度的减小,高 压涡轮功率减小,n_H下降,CDFS和HPC压比减 小,从而核心机进口流量减小,涵道比增大。图16 给出了随导向器角度变化压缩部件增压比的变 化。当导向器开度增大时,低压涡轮进口流量变 大,π_{HPT}增大,为了保持n_H不超过100%,通过减少 燃油供给量降低涡轮前温度,此时涡轮轴输出功率 下降,HPC与CDFS增压比随转速控制基本保持 不变,n_L持续下降导致风扇增压比降低。图17为 单位推力及单位耗油率变化曲线,由于在-1°时供

Fig.16 Compressor pressure ratio changes

Fig.17 Changes of specific thrust and specific fuel consumption rate

油量最大,从而单位推力最大,单位耗油率最高,随 着供油量的减小以及导叶开度的变化,单位推力与 单位耗油率均下降。

3 结 论

本文建立了变循环发动机整机模型及低压涡 轮导向器变几何模型,并分析了低压涡轮导叶调节 对变循环发动机单、双外涵工作模式的影响,得出 以下结论。

(1)低压涡轮导向器开度增大时,低压涡轮进口流量变大,高压涡轮膨胀比增大,低压涡轮膨胀 比减小,导致高压轴功率增大,低压轴功率减小, CDFS和HPC压比增大,风扇压比减小,调节方向 相反时核心机压比趋势相反,而由于导叶开度减小 时,虽然低压涡轮膨胀比增大,但涡轮效率也有所 降低,导致风扇增压比降低。

(2)低压涡轮导向器开度增大时,低压涡轮进口流量增大,高压涡轮膨胀比增大,高压涡轮分配功率增大,从而使得高压转子折合转速提高,但在 开度大于0°后,由于受到高压轴折合转速的限制, 需要降低燃油流量来保持转速,因而高压涡轮功率 受限;在开度小于0°时轴效率下降,可通过增加燃 油流量提高功率,此时受到涡轮前温度的限制,因 为在低压涡轮设计点附近发动机推力最大。

(3) 低压涡轮导向器开度增大时,核心机进口 流量增大,风扇涵道比与CDFS涵道比相应减小, 当导向器开度大于0°时,变化趋势逐渐平缓。在后 续的研究中,可通过与其他变几何部件耦合调节, 得到发动机的最优工作点。

参考文献:

[1] 胡松岩.变几何涡轮及其设计特点[J].航空发动机, 1996(3):21-26.

HU Songyan. Variable geometry turbine and its design characteristics[J]. Aeroengine, 1996(3): 21-26.

- [2] BRADGEMAN G, UAWITHYA C, CRANCE C.Instrumenting and acquiring data for the WR-21 gas turbine development programme: ASME 2001-GT-0542 [R].[S.I.]:ASME, 2001.
- [3] 丁凯锋,樊思齐.变几何涡扇发动机加速控制规律优 化设计[J].推进技术,1999,20(2):17-20.
 DING Kaifeng, FAN Siqi. Optimal design of accelerating control law for variable geometry turbofan engine
 [J]. Journal of Propulsion Technology, 1999,20(2): 17-20.
- [4] THOMAS P M. Performance of a sigle-stage turbine as affected by variable stator aera: AIAA 69-525[R].[S.l.]:AIAA, 1969.

- [5] LATIMER R J. Variable flow turbine: AGARD A04189P31[R].[S.l.]:[s.n.],1977.
- [6] MEYER C L, SMITH I D, BLOOMER H E.Performance of a turbojet engine with adjustable first-stage turbine stator and variable-aera exhaust nozzle: NACA E52L04[R].[S.I.]:NACA, 1953.
- [7] 贾小权,闫睿,宋义康,等.变几何低压涡轮级多工况气动性能研究[J].热能动力工程,2021,36(11):64-71.
 JIA Xiaoquan, YAN Rui, SONG Yikang, et al. Study on aerodynamic performance of variable geometry low pressure turbine stages under multiple working condition[J]. Journal of Engineering for Thermal Energy and Power,2021,36(11):64-71.
- [8] 高杰,郑群,刘鹏飞,等.变几何涡轮叶栅叶端小翼的 气动性能[J].航空学报,2016,37(12):3615-3623.
 GAO Jie, ZHENG Qun, LIU Pengfei, et al.Aerodynamic performance of a variable geometry turbine cascade using a vane-end winglet[J]. Acta Aeronautica et Astronautica Sinica,2016,37(12):3615-3623.
- [9] 朱之丽,李东.变几何涡扇发动机几何调节对性能的 影响[J].航空动力学报,1999,14(1):15-17.
 ZHU Zhili, LI Dong. Influence of geometric variation on performance of VGE[J]. Journal of Aerospace Power, 1999,14(1):15-17.
- [10] BOOTH T C, DODGE P R, HEPWORTH H K.Rotor-tip leakage: Part I—Basic methodology[J].Journal of Engineering for Power, 1982, 104(1): 154-161.
- [11] 张宜奎.变几何涡轮设计技术研究[D].南京:南京航

空航天大学,2020.

ZHANG Yikui .Research on variable gemeotry turbine design technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.

- [12] 李彦静,杜玉锋,宋义康,等.变几何涡轮可调叶栅过渡 态特性研究[J].热能动力工程,2021,36(10):126-135.
 LI Yanjing, DU Yufeng, SONG Yikang, et al. Research on tran sition state characteristics of variable geometry turbine adjustable cascade[J].Journal of Engineering for Thermal Energy and Power, 2021, 36(10): 126-135.
- [13] 翁史烈.现代燃气轮机装置[M].上海:上海交通大学 出版社,2015.
 WENG Shilie. Advanced gas turbine engines[M].
 Shanghai; Shanghai Jiao Tong University Press,2015.
- [14] 郑枫,臧述升,郁炜.单级轴流式变几何涡轮的计算 模型及结果分析[J].燃气轮机技术,2003,16(1): 39-42.
 ZHENG Feng, ZANG Shusheng, YU Wei.Calculation

model and result analysis of single stage axial-flow variable geometry turbines[J]. Gas Turbine Technology,2003,16(1): 39-42.

- [15] DAVID B. Edmunds, multivariable control for a variable area turbine engine: ASD-TR-77-59 [R]. Ohio: Aeronautical System Division, 1977.
- [16] CONVERSE G L.Extended parametric representation of compressor fans and turbines volume: NASA CR-174646[R].Washington:NASA,1984.

(编辑:夏道家)