Vol. 55 No. 3 Jun. 2023

DOI:10.16356/j.1005-2615.2023.03.002

切削加工有限元仿真技术的现状与展望

苏宏华¹,王禹封¹,谯 木¹,赵正彩¹,赵 彪¹,徐宝德² (1.南京航空航天大学机电学院,南京 210016; 2.北京星航机电装备有限公司,北京 100071)

摘要:切削加工有限元仿真是采用数值方法模拟切削加工过程的技术,可以研究切削加工过程中材料去除引发 的各种物理机制,在优化切削参数、提高加工质量、降低研究成本等方面具有显著优势。如何使切削加工有限元 仿真与实际的切削加工更加吻合是研究的热点,为此国内外开展了众多切削加工有限元仿真技术的研究工作, 相关成果已在多种关键部件的切削加工中得到工程应用。本文概述了切削加工有限元仿真的几何仿真和物理 仿真各自的基本原理、优势和发展趋势,系统总结了国内外学者为了提高切削加工有限元仿真的精度和效率,在 本构模型和网格划分方面所开展工作的发展现状,综述了切削加工全过程动态仿真方法的研究进展,并对切削 加工有限元仿真技术的重要问题和未来发展趋势进行了展望。

关键词:切削加工;本构模型;网格细化;几何仿真

中图分类号:TG501 文献标志码:A 文章编号:1005-2615(2023)03-0361-18

Review Current Questions and Strategies About Finite Element Simulation for Cutting Processing

 SU Honghua¹, WANG Yufeng¹, QIAO Mu¹, ZHAO Zhengcai¹, ZHAO Biao¹, XU Baode²
 (1. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China; 2. Beijing Xinghang Mechanical-Electric Equipment Co., Ltd., Beijing 100071, China)

Abstract: The cutting process finite element simulation technology is a numerical method to simulate the cutting process, which can investigate various physical mechanisms caused by material removal during the cutting process. It has significant advantages in optimizing cutting parameters, improving machining quality, and reducing research costs. The significantly investigate objective is how to make the finite element simulation of cutting process more consistent with actual cutting process, so numerous research on finite element simulation technology for cutting has been carried out both domestically and internationally, and the relevant achievements have been applied in engineering. This paper provides an overview of the basic principles, advantages, and development trends of geometric simulation and physical simulation in cutting process finite element simulation. It systematically summarizes the development of constitutive models and mesh partitioning by domestic and foreign scholars to improve the accuracy and efficiency of cutting machining finite element simulation. On this foundation, the research progress of the combination of geometric and physical simulation methods is summarized. Finally, the important issues and future development trends of finite element simulation technology for cutting machining are envisioned.

基金项目:国家自然科学基金(92160301,92060203)。

收稿日期:2023-04-17;修订日期:2023-05-17

作者简介:苏宏华,男,博士,教授,博士生导师,入选江苏省"六大高峰"人才计划,主持参与国家自然科学基金、国家科 技重大专项、国家重点研发计划、航空科学基金、江苏省自然科学基金等20余项,企业合作项目30余项;获国家发明专 利授权30余件;获省部级科技奖励3项;发表学术论文100余篇,出版专著1部。

通信作者:苏宏华,E-mail:shh@nuaa.edu.cn。

引用格式:苏宏华,王禹封,谯木,等.切削加工有限元仿真技术的现状与展望[J].南京航空航天大学学报,2023,55(3): 361-378. SU Honghua, WANG Yufeng, QIAO Mu, et al. Review current questions and strategies about finite element simulation for cutting processing[J]. Journal of Nanjing University of Aeronautics & Astronautics,2023,55(3):361-378.

Key words: cutting processing; constitutive model; mesh refinement; geometric simulation

近年来,随着航空航天、汽车、生物医学和能源 动力等高端产品性能要求的不断提高,各种高性能 钛合金、高温合金、金属间化合物和复合材料等难加 工材料不断投入应用,其关键部件的高效高品质加 工给机械制造领域带来了巨大机遇和严峻挑战^[1-5]。 切削加工是制造领域减材成型的最主要方法,涉及 了力学、热学和化学等多能场耦合现象,具有瞬时性 和高度非线性特征。因此,如何准确揭示切削加工 过程中的基本物理原理,进而预测和控制加工过程 物理量是切削加工领域的重点问题,也是实现材料 高品质、高效率和低成本加工的前提条件。

有限元仿真技术是一种将连续体视为若干个 有限大小单元体的离散化集合,以求解连续体力、 热问题的数值模拟方法。有限元仿真技术已经成 为揭示切削加工过程物理机理的实用技术,能够 定量预测和分析切削过程中切削力、温度、应力和 应变等多个物理量的分布及演变规律,在提高材 料加工质量、加工效率和降低工业成本等方面有 着广阔的应用前景。由美国科学院工程技术委员 会的相关统计可知,仿真技术的运用能够极大程 度上节约综合成本18%~50%,产品生产设计周 期能够减少30%~50%,产品质量也能够提高5 倍以上。

切削加工有限元仿真的主流分析软件主要是: ABAQUS、DEFORM、AdvantEdge 和 ANSYS。 通过查询重要文献数据库发现,近20年来,使用上 述主流有限元仿真软件进行切削加工仿真的研究 文献由平均每年20篇增加到每年300篇以上(图 1)。ABAQUS作为最常用的分析软件,具有强大 的接触能力、多物理场耦合分析能力以及对特大型 模型的高计算效率,允许用户根据工程实际需要定 义用户材料本构模型,能够极大地满足切削加工有 限元仿真的各种需求。2022年,采用ABAQUS软 件进行切削加工有限元仿真的研究论文数量达到 600余篇,约相当于采用AdvantEdge、ANSYS和 DEFORM软件的相关研究文献总和。

Fig.1 Number of articles on finite element simulation investigate of cutting machining

采用 ABAQUS 进行切削加工有限元仿真的 主要步骤包括:建立模型、模型离散、计算求解和 结果提取(图2)。其中,建立模型时近似场函数 的准确性和模型离散时网格划分的合理性对仿真 的质量和效率具有重要影响。近似场函数是指材 料应力与应变之间的关系,即材料的本构模型。

图2 切削加工仿真流程^[6-9]

Fig.2 Process of cutting simulation

网格划分是指模型离散单元的数量和质量,这涉 及到在求解每个单元的结果后再整合逼近整体结 构的仿真结果。因此,材料本构模型和网格划分 方法主要影响切削加工有限元仿真的求解精度和 运算效率。

近年来,国内外已开展了以提高仿真求解精 度和运算效率为目标的大量提升切削加工有限 元仿真与实际切削加工吻合程度的研究工作,本 文对此进行了系统总结和分析。首先对存在物 理因素介入的物理仿真中材料本构模型和网格 划分方法的发展历程、研究现状进行了分析;然 后讨论了单纯考虑几何尺寸改变的几何仿真特 点,包括几何仿真的计算原理和发展脉络;论述 了几何-物理仿真方法结合的切削加工有限元仿 真技术的研究现状;最后,本文对切削加工有限 元仿真技术的发展趋势和值得研究的重要问题 进行了展望。

1 切削加工物理仿真现状

物理仿真是分析与预测切削加工过程中物理 量的重要手段,对揭示材料去除机理和优化工艺都 具有重要意义。准确描述材料本构关系和合理划 分模型网格是提高切削加工有限元仿真求解精度 和计算效率的关键。

1.1 材料本构模型

用于表征变形行为的本构模型可分为两

类^[10]:(1)基于物理机制的本构方程式^[11],它是基 于材料微观组织结构的变化会导致材料的变形行 为发生改变的机制而提出的适合描述此类材料变 形规律的本构方程式^[12],例如:Bodner-Partom (BP)^[13]模型、Zerilli-Armstrong(Z-A)^[14]本构模 型、Strinberg-Guinan(SG)^[15]模型等;(2)唯象本构 模型,它是基于材料在宏观上表现出的力学特性, 经过特定的力学性能试验,不断总结和分析温度、 应变率、应变的变化对材料流动应力的影响规律 而提出的经验模型,例如:Fields-Backofen(FB)模 型、Voce-Kocks(VK)模型、Johnson-Cook(J-C)^[16] 模型和 Molinari-Ravichandran(MR)模型等。

表1对比了部分基于物理机制的本构模型。 其中,Z-A模型最具代表性,Zerilli和Armstrong基 于金属位错力学理论推导出Z-A本构模型,它是基 于热激活理论来描述应变率-温效应,针对不同晶 体结构的金属具有不同的解析形式。相对于其他 基于位错动力学的本构模型,Z-A本构模型表达形 式较为简单,在工程中应用的也相对较多^[17-21]。从 表1中可以看出,基于物理基础的本构模型用于描 述柔性固体材料的粘弹塑性力学行为,主要针对材 料的微观非线性力学行为。由于常规金属材料的 切削加工过程难以发生非线性力学行为,因此常规 金属材料的本构模型多数是采用描述线性力学行 为的J-C模型。

本构模型名称	材料力学属性	建模思想	特点
Bodner-Partom(BP) ^[14]	金属材料的黏弹塑性 力学行为	基于不可逆热力学,位错 动力学和内变量理论。	不考虑屈服条件以及加载和卸载准则;总 应变率分成弹性和非弹性两个分量。
Zerilli-Armstrong(Z-A) ^[22]	金属材料的塑性流动 行为	位错动力学理论;BCC和 FCC晶体结构的塑性变形 微观机制不同。	考虑温度、应变率和晶粒尺寸;将流动应力 分为非热分量和热分量两部分。
Steinberg-Guinan(SG) ^[16]	高压下金属材料的塑 性流动行为	剪切模量和屈服应力具有 相同的温度和压强依赖 性。	考虑了高温、高压和高应变率耦合加载下 的材料力学行为;认为流动应力不会随着 应变率的升高无限升高。
Steinberg-Lund(SL) ^[23]	高压下金属材料的塑 性流动行为	流动应力等于热分量和非 热分量之和,压强通过影 响剪切模量影响流动应 力。	相比于SG模型考虑了更大的应变率范 围;体现了微观机制和宏观性能之间的联 系。
Mecking-Kocks (MK) ^[24]	粘塑性力学行为	位错累积是塑性变形主要 障碍。	流动应力是应变硬化和率-温效应的乘积; 在应变硬化项中考虑动态回复。
机械阈值应力(Mechanical threshold stress, MTS) ^[25]	考虑热激活控制的塑 性流动行为	采用力学阈值应力作为内 部结构参量。	认为应变率敏感性的突变并非是微观变形 机制的改变,而是由于结构演化的应变率 敏感性导致的。
Voyiadjis (VA) ^[26]	金属塑性变形的微观 机制	位错动力学	采用应变率的幂函数形式,比与对数应变 率成线性关系的模型能更好地描述FCC 金属非线性的应变率效应。

表1 基于物理机制本构模型之间的比较 Table 1 Comparison between constitutive models based on physical mechanisms

唯象本构模型的最大应用优势是可以较方便 地利用有限的实验结果拟合出相对较少的本构参 数。J-C模型是迄今为止应用最广泛的唯象本构模 型。Johnson和Cook通过对撞击和侵蚀的实验现 象观测提出了J-C本构模型,此本构模型把材料在 变形过程中的应力变化归结为应变强化、应变率强 化和热软化效应之间的耦合作用。J-C本构模型形 式较为简单,仅通过5个参数就能描述材料在大范 围应变、应变率和温度下的应力应变关系,广泛应 用于切削加工有限元仿真,并多被集成于商业有限 元分析软件^[27-32]。除了 J-C 模型以外,还有很多唯 象动态本构模型用来描述应力应变关系,例如:用 于描述线性粘弹性模型的Maxwell模型、Kelvin模 型等,它们假设材料的应力-应变关系包含弹性分量 和粘性分量,具有时间依赖性。用于描述非线性弹 性模型的 MR模型假设材料的应力-应变关系不是 线性的,而是随应变的增加而变化,可以更准确地 描述材料的弹性性质。总的来说,不同的材料本构 模型都有其适用范围和优缺点,选择合适的模型应 该根据具体的问题和材料性质进行综合考虑。

唯象本构模型和基于物理机制的模型是通过 对物理实验结果进行计算后获得的。然而在研究 诸如钛合金、高温合金等难加工材料时,由于在切 削过程中材料受到高温和大应变率影响,使其产 生高度非线性的变形行为,流动应力的影响因素 之间也存在相互作用且具有非线性。这导致材料 在切削加工时温度经常超过再结晶转变温度甚至 相变温度,使得材料发生再结晶或相变。因此材 料会一直处于软化状态,并具有高塑性、低变形抗 力特性。常用的 J-C 本构模型和 Z-A 本构模型不 能较好地反映材料在大应变下因材料的回复再结 晶效应而引起的软化现象[33-35],造成切削加工有 限元仿真模型可靠性较差。因此,一些学者提出 了修正的 J-C 模型和 Z-A 模型以解决上述问题,例 如:Calamaz 等^[36]发现材料在低应变下存在应变 硬化的现象,在高应变状态下存在应变软化现象, 他们认为这种现象与材料的动态回复再结晶机制 相关。为了更准确地描述这种现象,他们在J-C 本构模型的基础上提出了 TANH 模型; Liu 等^[37] 研究发现切削加工过程中材料除了发生动态回复 和再结晶机制外,还会发生微裂纹等其他材料损 伤现象。因此,他们在Z-A本构模型的基础上提 出了 Mod_Z-A 模型。表2比较了一系列为解决大 应变软化问题的本构模型的建模修正思想和主要 特点。这些模型的提出进一步充实了动态本构模 型的材料科学基础。

Table 2 Comparison between modified constitutive models					
研究人员	模型名称	基础模型	修正思想	适用材料	
Calamaz 等 ^[36]	TANH	J-C模型	考虑了材料的动态回复再结晶机制	Ti6Al4V	
Liu等 ^[37]	Mod Z-A	Z-A模型	引入应变梯度效应来描述材料的局部应 变硬化行为	金属基复合材料	
Nemat-Nasser 等 ^[38]	Nemat-Nasser	J-C模型	材料在临界温度时,应力会受到动态应 变时效的影响突然下降	高强度钢	
Keer 等 ^[39]	KHL	J-C模型	考虑应变和应变率耦合效应	Ti6Al4V	
Cheng 等	_	J-C模型	考虑了应力状态对流动应力的影响		
Zhang等 ^[40]	_	Z-A模型	考虑应变、温度和应变率对Z-A模型中 参数C ₃ 的影响	Ni ₃ Al基高温合金	
Samantaray 等 ^[41]	_	Z-A模型	结合 J-C 模型的特点,在 Z-A 模型中体现 了塑性应变、温度和应变率之间的耦合 影响关系	D9奥氏体不锈钢	
Gao 等 ^[42]	_	Z-A模型	考虑了应变历史、温度和应变率效应	FCC金属	
Yuan等 ^[43]	—	Z-A模型	描述其各向异性、考虑动态应变时效的 温度敏感性和分段的应变率敏感性	激光金属沉积的 Inconel 718合金	

表 2 修正本构模型之间的比较

另外,由于新材料的力学行为具有复杂多样特 点,难以完全利用函数形式的本构模型描述其力学 行为,许多研究人员开始研究不基于数学函数表达 的建模方法来描述这些材料的力学行为。越来越 多的研究证实了采用数据驱动方法建立材料本构 是解决上述问题的关键途径。基于数据驱动研究 材料本构模型的方法主要分为两种:神经网络本构 模型和纯数据计算模型。

神经网络本构模型的建立过程是采用试验获

得应力-应变数据用于训练神经网络替代材料本构 模型,多数是以应变和应变速率作为输入,以应力 增量作为输出。由于材料的复杂性、路径依赖性和 非线性等原因,研究人员提出多种神经网络本构模 型以解决上述问题,例如 Ghaboussi等^[44]提出了一 种新的嵌套自适应神经网络本构模型来描述力学 行为的路径依赖性。表3列举了多种神经网络本 构模型的研究。

纯数据计算模型完全摆脱了传统的有限元计

而去上日	中楼子目	检计已始加良	检山巴姆亚昆	世生动力	
研究人 页	建快上具	输入层初埋重	输出层物埋重	<u> </u>	行点
[45]	反向传播人工神经网络(Back-			电缆流变学	提出了弹塑性迟滞建模和人
Lefik	propagation artificial neural net-	应变	应力	不可逆非线	工神经网络在双轴非线性行
	work, BP ANN)			性行为	为近似中的应用。
	循环神经网络(Recurrent neural			未固化天然	代表应力-拉伸依赖性的神
$\operatorname{Zopf}^{\lfloor 46 \rfloor}$	network RNN)	应变、应变率	应力	橡胶的非弹	经网络只能在一维方向上进
	network, ICINIV)			性行为	行分析,以产生纯弹性描述。
				碳钢热变形	将4层反向传播人工神经网
Rao ^[47]	BP ANN	温度、应变率	流动应力	过程的流动	络应用于热变形过程的流动
				应力预测	应力预测。
	生产现在坐上了地位回始楼型	温度、应变率、应		रह आत हेन्द्र रह	
T T a d a a a a b b b b b b b b b b	果成现家学人上押空网络模型 (Internet of hereing and here of f	变、加工硬化系数	达马古力	<u> </u>	当合JEM和ANN 侯型; 測
Hodgson	(Integrated phenomenology artili-	和加工硬化系数	流劲应力	化相切念冉	测结米与 EM 相 ANN 相比
	cial neural network, IPANN)	与应力的乘积		靖 皕仃刀	史加准明。
				预测 Aer-	
. [49]	基于多层感知器(Multi-layer per-	应变、对数应变速		met100钢	相比于传统的Arrheninus方
J_1	ceptron,MLP)的前馈-BP ANN	率和温度	流动应力	的高温变形	程,ANN 模型顶测的结果更
	1			行为	准明。
				预测铸造	
[50]		温度、应变速率和		AZ81 镁合	相比于本构方程更有效目更
Sabokpa	前馈-BP ANN 和L-M 训练算法	应变	应力	金的高温流	准确。
				动行为	12 94 0
				-911171	开展了传统解析木构模型
		泪度 应应速家和		铸造铝	片 A NN
Haghdadi ^[51]	MLP 的前馈神经网络 ANN	血反、 <u>四</u> 又还平和 应亦	应力	A356的高	中 计 H A NN 横刑目右面
		应文		温流动行为	比, 仍 / AININ 侯至兵有丈 转确的预测能力
	と信期にな(Long and about torma				相如15.000000000000000000000000000000000000
	て短期に亿(Long and short term	时间 亚特卢赤亚			
A.1 . 1.1 [52]	memory,LS1M)、门径递归单儿	时间:半均应受张	塑性能量和应	计算热粘塑	3种方法都能完成,但TCN
Abueidda	速归伸纶网络(Gated recursive	艮;非时间:面积	力	性本构模型	计算效率最高。
	unit,GRU)、时间卷积网络(Time	分奴、受形路径			
	convolutional network, TCN)				

表3 神经网络本构模型的部分研究成果

Table 3 Partial research results of neural network constitutive models

算模式,避免了材料本构模型的参与,多用于求解 非线性三维力学问题。在2016年,Oritiz和Kirchdoerfer共同提出了纯数据计算模型(Data-driven computational mechanics,DDCM),其建立过程是 将试验获得的材料数据集执行计算,结合实验数 据、基本守恒定律和相关约束,通过实验数据点和 计算数据点之间在相空间中的距离最小化函数迭 代优化得到满足边界条件的最优解。但随着求解 维度从一维提高到二维或三维时,数据量呈几何倍 数增加,求解迭代计算量也增加,导致求解效率低 甚至无法求解。另外,由于纯数据计算模型的计算 模式与现有的商用有限元软件不兼容,阻碍了其方 法的扩展和推广。

1.2 本构模型参数获取方法

精确的材料本构模型参数是准确描述材料变 形行为的关键因素之一。获取材料本构模型参数 的方法有两种:(1)研究材料力学性能的实验方法 (以下简称为实验法);(2)基于切削仿真模型的反 求方法(以下简称为反求法)。实验法获取本构模 型参数的方法是对材料进行力学性能测试,例如: 采用静态、准静态材料进行拉伸试验,霍普金森压 杆试验(Split hopkinson pressure bar, SHPB)等。 表4介绍了近年来采用实验法获取本构模型参数的相关研究。实验法适用于低应变($\epsilon < 1$)和低应变率(10^{-4} s⁻¹< $\epsilon < 10^{4}$ s⁻¹)条件下的塑性变形过程,但不适用于高应变($\epsilon > 1$)和高应变率(10^{-4} s⁻¹< $\epsilon < 10^{4}$ s⁻¹)过程。因此,实验法获得的材料本构模型参数与材料实际的物理行为相比存在一定差异,难以准确描述材料在整个变形过程中的变形特征。

反求法是根据切削试验结果反向求解材料本 构模型参数的方法,切削加工过程中有30余种物 理量和试验结果可以反映材料的变形行为^[53],并 且切削试验本身的条件完全满足所需的材料变形 条件。Liu等^[54]发现材料本构模型参数对切削加 工有限元模型有较大的影响,模型中各个参数对绝 热剪切带形成的影响程度不同,表明反求法获取模 型参数是可行的。表5介绍了研究人员采用反求 法获取本构模型参数的研究成果。具体而言,反求 法是以个人经验选取初始参数,然后人为协调反求 算法和目标适应度之间的关系。

综上所述,获取材料本构模型参数主要采用基 于力学试验的实验法和借用切削加工有限元仿真 的反求法。然而,使用实验法获得的本构模型参数

×构模型类型 模型参数
A=400 MPa B=1 798 MPa J-C模型 N=0.914 3 C=0.031 2 m=1.53
A=783 MPa B=498 MPa J-C模型 C=0.028 N=0.28 m=1.0
A=2 100 MPa B=1 750 MPa J-C 模型 N=0.002 8 C=0.65 m=0.75
$C_0 = 740 \text{ MPa}$ $C_1 = 240 \text{ MPa}$ $C_2 = 0.002 4$ $C_3 = 0.000 43$ $C_4 = 656$
C_{10} =203 MPa C_{01} =-185 MPa C_{11} =-55 MPa C_{20} =28 MPa MR模型 C_{02} =27 MPa C_{21} =-14 MPa C_{12} =14 MPa C_{30} =3 264 MPa C_{03} =-7 800 MPa

	表 4	实验法获取材料本构模型参数
Table 4	Constitutive m	odel parameters obtained by experimental methods

表5 采用反求法获取本构模型参数的部分研究成果

Table 5 Partial research results on obtaining constitutive model parameters using the reverse method

研究人员	本构模型	材料	物理量	算法	特点
Shatla 筶 ^[60]	修正的 I-C 模型	工具钢	切削力	模拟退火算法(Simu-	与SHPB技术等实验法相比,提出的金属切削
Onatia (j	廖正的30快至	工大的	91 FI 71	lated annealing, SA)	流动应力测定方法更简单,成本更低。
			111 위 구 11		算法从材料常数的解空间中识别出物理上合
Klocke 等 ^[61]	J-C模型	Inconel 718	切 則 力 切 屋 日 伺	最小二乘法	理的解,同时考虑了切削力分量和切屑几何
			用几四		形状。
			扫冶市	Broyden-	迭代18次即开始收敛,只需要少量的有限元
Baker 等 ^[62]	J-C模型	塑性材料	切削刀 前扣鱼	Fletcher-Goldfarb-Sha	模拟就可以找到材料参数,精度和效率大幅
			野切用	nnon(BFGS)算法	度提升。
A area a 11 年[63]	トロ塩利	A 181 4140	切削力	上县速油箅汁	预测的J-C模型常数在模拟切削工艺参数与
Agmen 寺 一	」し候型	A151 4140	切屑厚度	下受临仅异法	实验切削工艺参数之间的误差最大为2%。

进行仿真时,其结果与实际切削加工过程中材料的 变形行为相比仍有较大误差。有些仿真模型还需 要根据实际变形行为不断地调试和修正,且常用的 修正方法仍是传统的试错法。这导致仿真的周期 长、效率低,也会造成仿真模型的模拟精度不足。 另外,采用反求法获取材料本构模型参数时,参数 区间的选取仍依赖个人经验,导致反求效率低,适 应性差。因此,快速准确地获取材料本构模型参数 是建立高精度切削加工有限元仿真模型的关键。

1.3 有限元模型网格划分技术

有限元模型中网格的合理划分方法也是影响 仿真求解精度和求解效率的关键。由于有限元法 是将一个具体的模型离散化,增加网格与节点的数 量在一定范围内可以大幅提高求解的精度。但随 着离散化模型复杂度的增加,模型求解时间也随之 增加,最终造成求解效率降低。因此,研究人员为 了提高求解精度和求解效率对有限元模型网格的 划分方法开展了大量研究。

根据有限元模型网格的拓扑关系,有限元模型 网格分为结构化网格和非结构化网格。结构化网 格是指所有交于同一节点的相邻网格单元和节点 相同,网格内所有节点的拓扑结构均完全相同^[64]。 因此,结构化网格具有结构简单、生成速度快和生 成质量好等优点,最具有代表性的是四边形网格与 六面体网格[65-67]。但由于结构化网格的规则形状 仅适用于相对规整的模型,对于复杂模型来说结构 化网格难以进行合理划分。

非结构化网格是指其内部节点的相邻单元数 量不同,即不同网格节点相连接的网格数量可以不 同^[68-70]。非结构化网格的优点是能够对复杂区域 进行合理的网格划分,最具有代表性的是三角形网 格与四面体网格。但是,非结构化网格的主要缺点 是网格的生成方式相对复杂,求解速度方面没有结 构化网格快。当复杂模型采用非结构化网格进行 全局划分时,通常选取较小的网格尺寸。这会导致 模型整体网格数量激增,大幅度降低仿真求解 速率。

为了实现模型网格的高效合理划分,研究人 员提出了网格分区细化技术。切削加工有限元仿 真模型的网格分区细化技术是将切削区域内的网 格以一种既定规则进行细化,反之未切削区域或 已切削区域则适当加粗网格。例如,在钛合金的 切削加工有限元仿真中,研究人员为了得到锯齿 状切屑将待去除材料区域的网格细化,不参与切 削的区域网格粗化[71-72],如图3所示。这种方法既 得到了与实验相符的锯齿状切屑,还保证了有限 元仿真效率。因此,局部网格细化方法能够保持 切削区域网格的精度足够高,且求解效率在可接 受范围内。

Fig.3 Research status on local mesh refinement of finite element simulation for cutting titanium alloy

目前常用的网格细化方法包括:h方法、p 方法、r方法和rp方法,4种方法的对比如表6 所示。其中,h-p方法的应用最广泛,它能利用 更高阶多项式求近似解,以此得到更精确的数

值解。许多研究人员进行切削加工有限元仿 真研究采用了 h-p 方法对模型网格进行细化, 与采用h方法相比计算时间平均减少60% 以上。

	Table 6 Comparison of commonly use	a mesh relinement methods
方法名称	细化原理	特点
h方法	增加局部节点数量以提高网格密度	不改变插值函数的阶次; 确保网格饱满,不依赖初始网格
p方法	增加插值函数阶次,保持整体网格的尺寸和密度不变	方程组复杂化,求解计算量相应提升
r方法	移动网格节点和改变网格形状以增大局部网格密度	不改变有限元网格数量,也不改变插值函数的阶数
h-p方法	h方法与p方法混合	先加密网格,再提高插值函数阶数
r-p方法	r方法与p方法混合	网格节点和改变网格形状的同时,增加插值函数阶次

衣り	吊用印	小网俗	1111化。	万法	印刈	൛

able 6	Comparison	of commonly	used mesh	refinement	method
--------	------------	-------------	-----------	------------	--------

ᆇᄪᇥᇔᇥᇭᄮᆃᆂᇥᆋᄔ

为了在保持求解精度的前提下进一步提高模 型求解效率,研究人员在局部网格细化技术的基础 上提出了局部网格自适应动态细化技术。局部网 格自适应动态细化技术是指在模型全局网格粗化 时,对仿真计算过程中物理量集中区域或变化梯度 较大区域的网格进行自适应动态细化。局部网格 自适应动态细化技术的实现主要包括3个过程:首 先,选择几何或者物理误差指标来确定细化网格的 特征(待细化区域和细化后网格尺寸);其次,根据 误差指标进行判断,在局部区域将粗网格进行细化 生成新网格;最后,将旧网格上的物理状态转移至 新网格。根据网格细化判断准则的不同,可以将局 部网格自适应动态细化方法分为基于几何的判断 法和基于物理量的判断法。

基于几何的判断标准主要有两种:(1)对网格 本身几何质量进行判断,当网格出现畸变时选择畸 变网格进行细化;(2)通过几何位置进行判断,筛 选指定区域内的网格进行进行细化。例如:黄丽 丽^[73]在几何实体上根据用户需求采用点、线、面及 密度窗口的方式设定网格密度,如图4所示。南京 航空航天大学的杨振等^[74]和李宗旺等^[75]分别提出 了三维和二维网格的局部自适应动态细化算法,细 化区域随刀具移动的几何位置进行选取。该算法 应用于钛合金车削加工仿真时,与局部细化仿真模 型相比求解速度分别提升了174.2%和210%。

Fig.4 An example of local mesh adaptive refinement based on geometric judgment method

但基于几何的网格细化算法多数是在仿真前 进行预处理,根据已有的仿真结果来预设网格细 化尺寸以获得最优细化参数。这种方法在进行不 同材料及不同工艺下的切削加工有限元仿真时, 需要多次重复调整细化参数,导致运算成本大幅 度增加。因此,为了解决上述存在的问题,研究人 员提出了基于物理量的网格自适应动态细化 方法。

基于物理量的局部网格自适应动态细化方法 是通过仿真过程中局部物理量的变化情况来动态 细化网格,避免了需进行预处理实现网格动态细 化的问题,具体细化流程是:首先,通过计算得到 基网格上的数值解;然后,根据基网格上数值解的 梯度变化设定数值解的截断误差阈值;再根据该 阈值进行相关物理量的判断,最终实现区域网格 局部动态细化。多数研究人员采用有限元后验误 差估计法来实现基于物理量的网格细化^[76],即利 用有限元解构造误差估计量的一类方法。最终实 现了在不同材料的不同本构模型在切削加工有限 元仿真时,依据物理场的变化情况动态调整局部 的网格尺寸,如图5所示。20世纪70年代Turcke 等^[77]建立了评估整体离散误差的基本框架,开创 了后验误差估计研究先河,后来许多不同方法及 技术被相继提出。

图 5 基于物理量判断的局部网格自适应动态细化实例^[78] Fig.5 An example of local mesh adaptive dynamic refinement based on physical quantity judgment^[78]

目前主要的后验误差估计方法包括基于恢 复的误差估计法和基于残差的误差估计法。基 于恢复的误差估计法的原理是:常规有限元解 可以通过后处理的投影技术获得恢复的应力或 位移场,从而将误差定义为恢复解与原有限元 解的差值。基于恢复的误差估计法主要依赖于 超收敛的后处理应力或位移场,而超收敛应力 或位移场的获得通常依赖于投影类方法。超收 敛分片恢复法(Superconvergent patch recovery, SPR)由于计算量小、形式灵活,在工程领域的 应用特别广泛,如商用有限元软件ABAQUS中 集成了 SPR法的自适应分析功能。尽管 SPR法 及其相关的拓展方法表现出了优良特性,但是 在一些情况下超收敛点可能不存在,从而不依 赖于超收敛点的恢复方法得到了发展。

基于残差的误差估计法的原理是:有限元解通 常无法严格满足偏微分方程,从而形成非零残差, 该残差可用来构造显式或隐式的误差估计^[79-81]。 显式误差估计是直接导出误差估计与局部区域残 值的显式函数关系,最早由 Babuška 和 Rheinboldt^[82]提出了理论推导和一维问题的后验误差估 计公式,其后 Babuška 和 Miller 将之推广至二维平 面弹性问题^[83-85]。Ladeveze 和 Pelle 采用余能原 理,得到了特征值的上下界,为网格自适应细化提 供了一种解决方案^[86]。与基于恢复的误差估计法 相比,基于显示法残差的误差估计法的待定系数与 问题相关,通常难以确定。基于隐式法残差的误差 估计法则通常需要在子域规模(单个或若干单元) 上进行再次离散。基于局部问题的不同边界获得 能量意义上的误差下界或者上界。总体而言,基于 残差法和基于恢复法的误差估计方法影响较为广 泛,表7列举了部分研究人员采用误差估计法进行 网格自适应动态细化的研究成果。

表7 采用误差估计法进行网格自适应动态细化的研究成果

fable 7	Research results on	adaptive dynamic	refinement of grids	using error	estimation method
---------	---------------------	------------------	---------------------	-------------	-------------------

研究人员	细化方法	误差估计方法	物理量	研究对象
Vang	ト方法	建差法后於提差估计	累积塑性应变值和延性损伤	预测塑性结构内部的损伤起始和
I allg 🕂	пла	戏左仏川迎伏左旧月	测量值的尺寸	宏观裂纹扩展
Friberg 等 ^[88]	p方法	残差法后验误差估计	应变率	悬臂梁
Wang 等 ^[89]	h-p方法	后验恢复误差估计法	Mises应力	预测裂纹扩展
Xing 等 ^[90]	h方法	残差法后验误差估计	应变能	超弹性复合材料的大变形断裂
Dehghan 等 ^[91]	h方法	后验恢复误差估计法	应变	有限元网格的自适应细化
Bonney 等 ^[92]	h-p方法	后验恢复误差估计法	应力场	各向同性金属材料孔应力场分布
Dessinger #I Laborators[93]	上子汁	丘	白力 朝州白亦 泪度 提佐	模拟切削加工过程中锯齿形切屑
Rassineux 🗛 Labergere	II刀伝	加 迎 恢 复 庆 左 怕 り 伝	应力、塑性应受、温度、顶切	成形
Zhang 等 ^[94]	h-p方法	残差法后验误差估计	应力、应变温度	金属铣削加工过程

2 切削加工几何仿真现状

高保真度的几何仿真是追求复杂几何零件高 精度切削加工有限元仿真的重要部分。几何仿真 旨在构建虚拟成品零件的3D模型,计算模型和零 件设计与加工之间的几何偏差。几何仿真是不考 虑切削力、切削热、残余应力等物理因素介入的纯 几何问题,假设在理想状态下进行切削加工过程。 几何仿真多用于验证数控加工程序的准确性,即检 验是否存在过切、欠切和干涉碰撞等状况。从20 世纪80年代Voelcker和Hunt^[95]首次将几何仿真用 于NC程序的检验开始,经过近40年的发展国内外 对于几何仿真方面的研究日渐成熟。许多功能强 大的数控加工仿真系统相继开发,如西门子的Unigraphics NX、CGTech 的 VERICUT、CNC Software Inc. 公司的 MASTERCAM、以色列的 Cimatron、达索公司的 SolidWorks、美国 PTC 的 Pro/ Enginee等。

数控加工仿真系统进行几何仿真的主要方法 包括:基于图像的方法、基于实体建模的方法和离 散方法。其中,基于图像的方法是利用图像空间中 像素的属性设置来表示工件和模拟加工过程,如 Z-buffer方法和 Raycasting方法。该方法算法简 单,可视化效果好且易于实现。但在仿真过程中视 图方向难固定,仿真精度不高,所以该方法的应用 并不广泛。

实现基于实体建模的方法是对工件模型和刀 具扫描体模型进行运算。刀具扫描体是刀具在空 间中按既定的刀具轨迹和运动方式从一个位置运 动到另一位置时,运动过程中形成的实体就是运动 轨迹内的刀具扫描体。基于实体建模的方法进行 几何仿真是以工件模型和刀具扫描体积之的空间 分割表达法或离散矢量求交法来模拟材料去除过 程^[96-98]。离散矢量求交法是采用离散点将几何模 型的设计曲面近似拟合,每个离散点都对应一个矢 量。切削加工过程的实现是通过离散点的矢量与 刀具扫描体进行求交运算。这种方法常用于复杂 曲面数控加工的误差检验,与直接实体造型法相比 减少了计算量。但是仿真精度不高,在实际工程中 应用较少。

空间分割表达法的基本思想是:采用一组基本 元素近似表示工件的实体模型,简化实体与实体之 间的布尔运算。空间分割表达法可以大幅度提高 仿真速度和效率,是目前研究最多、应用最广的几 何仿真方法。根据基本元素近似表达整体模型的 数据结构和分割方法的不同,空间分割表达法主要 分为:Dexel表达法、Voxel表达法、八叉树表达法、四叉树表达法、光线表达法、基于 Z-Map 模型的方 法等,几种方法的对比如表 8 所示。但是,如果要 获得较高求解精度的模型,需要计算机有足够大的 存储空间来实现。

离散方法是另一类近似方法,通过给定精度范 围内的离散工件来表示整体工件^[99]。离散方法在 切削加工有限元仿真中是将复杂的三维布尔减法 运算简化为简单的一维或二维布尔减法运算,工件 模型的离散方法主要包括:基于点向量法^[100]、偶数 空间分解法^[101]、细节层次法^[102]等。由于其算法简 单,在几何仿真方法中也得到了一些关注和应用。

卷

Table 8 Comparison of uniferent space segmentation expressions				
研究人员	表达方法	刀具扫描体建模方法	主要研究内容	特点
Abdel Malek 奪 ^[103]	Dexel表达法	雅可比矩阵降秩法	开发了依据机床加工轨迹的扫描 体	广泛适用于隐式曲面的扫描体建模
Blackmore 等 ^[104-105]	Voxel表达法	基于扫描微分方程的 方法	数控加工中平端刀具四块运动的 仿真	初始位置计算掠点集,其余掠点由 扫包络方程的流生成,大大降低了 计算复杂度
Joshi 和 Sonawane ^[106]	八叉树(Oc- tree)表达法	基于包络理论的方法	切屑几何形状的分析建模	预测切屑几何模型与实验结果的吻 合度达到90%
Chiou 和 Lee ^[107]	四叉树表达法	基于扫描微分方程的 方法	开发了通用自动编程刀具扫掠轮 廓的显式表示	与传几何仿真方法相比,提供了刀 具扫掠后轮廓的显式解,多用于五 轴数控加工验证
Ma等 ^[108]	基于 Z-Map 模 型法	距离场和包络理论	五轴铣削刀具-工件啮合计算方法	利用刀具扫描体执行三阶段相交检 测和加速布尔运算从加工中的工件 中减去材料
Fleisig 和 Spence ^[109]	四叉树表达法	基于包络理论的方法	型腔粗加工仿真	通过考虑刀具浸没度相关的边和面 相交图,大幅度减少了运算时间
Zhu和Li ^[110]	光线表达法	球面同余包络理论	五轴圆锥刀具侧铣加工	考虑刀具跳动的刀具轨迹优化问题 建模为混合整数线性规划问题,可 显著减小因跳动引起的几何误差
Roth等 ^[111]	四叉树表达法	压痕曲线法	五轴铣削加工	与三轴加工的解析解的结果完全吻 合,既可用于刀具轨迹的验证,也可 用于刀具轨迹的修正

表 8 不同空间分割表达法的比较

离散法进行几何仿真存在的主要问题是它表示了 具有离散点的几何模型,但为了提高精度而增加离 散点的数量会导致计算成本增加。总体来说,几何 仿真在理论与软件开发方面都发展的较为成熟,但 几何仿真并不能揭示人们所关注的加工过程的切 削机理和物理量变化规律,如:切削力、切削热、切 屑形态、应力、应变、变形和振动等。

3 切削加工全过程动态仿真

通过上述综述可知,国内外对切削加工有限元 仿真进行了深入的研究,在数值模型的计算精度和 求解效率方面进行了优化和改进。但切削加工是 一个连续的物理过程,随着切削加工的进行,工件 加工质量受到各种物理量相互累加作用的影响。 单纯的几何仿真或物理仿真难以模拟出切削加工 全过程的动态变化。因此,完成切削加工全过程的 动态仿真是研究切削加工过程的最终目标,能够更 加充分地发挥有限元仿真技术的优势,是未来实现 智能制造的必然发展趋势。

现有的切削加工物理仿真商业软件都难以高 效率地完成复杂零件切削加工全过程物理仿真,其 主要问题是:完全考虑切削加工全过程的物理仿真 则计算效率会大幅度下降,甚至无法完成运算;只 考虑几何加工仿真则无法考虑切削加工过程中物 理量的变化情况。

为了进行完整的切削加工有限元仿真,很多学 者研究了几何与物理仿真相结合的方法。Strenowsiki等^[112]最早将有限元建模方法引入数控加工 几何仿真中,提出了一种单元分离方法用于模拟切 削加工过程。Herbert等^[113]在几何仿真中引入切削 力的作用,综合考虑了"机床-工件-刀具-夹紧装 置-切削参数"组成的整个制造系统,对工艺进行了 优化,提高了几何仿真精度。Gong等^[114]提出了一 种新的算法,用于为通过有限元模拟和网格映射获 得的新模具表面构建数控加工刀具路径,确定了所 有刀位点相对于新模具网格运动的位置,工件厚度 测量结果与有限元仿真结果吻合度较好,验证了算 法的准确性,有助于提高了产品质量和生产效率。 此外,国内的清华大学^[115]、哈尔滨工业大学^[116]、东 北大学^[117]、上海交通大学^[116]、两 末大学^[120]、南京航空航天大学^[121]等高校对几何仿 真和物理仿真集成也进行了有益的研究与探索。

在上述几何仿真和物理仿真集成的研究中, "生死单元"技术多用于完成高精度高效率的切削 加工全过程仿真。"生死单元"技术是对指定的网格 单元进行"生"或"死"设置,使其在该分析步中增加 到模型上或从模型中去除^[122-124]。网格单元的"生" 或"死"主要是通过单元刚度矩阵失效的方法来实 现,具体方法为:采用数值很小的因子(小于10e⁻⁶) 与单元的刚度矩阵相乘,随后该单元刚度矩阵的数 值也就变得极小(接近于零),从而使其刚度矩阵在 计算中失效。"生死单元"的基本原理如方程(1)所 示,其中,F是施加在网格节点的力,K为刚度矩 阵,U为节点矩阵。当刚度矩阵无限小时,网格单 元的力F也无限小,甚至可以忽略不计。因此,可 以通过控制刚度矩阵实现单元的启用或失效。 (1)

$F = K \cdot U$

当设置单元为"生"时,可通过重新激活其刚度 矩阵的方法将该单元的刚度、质量、单元载荷等恢 复到原来状态[125-127]。同理,用上述方法将单元"杀 死"后,该单元的质量、比热等也会变得极小。因 此,"生死单元"技术应用在切削全过程仿真时,学 者们结合切削加工刀轨选择工件上待去除区域的 网格单元,将其在对应分析步中设置为"死",即完 成了切削加工全过程的几何仿真部分^[3, 5, 128]。物 理仿真是计算刀具与工件接触产生的作用力及材 料去除后材料产生的弹塑性变形。因此,通过施加 移动载荷的方式模拟切削加工中的切削力对工件 的作用,以此模拟物理仿真过程。在ABAQUS软 件中可以采用"Model change"模块实现"生死单 元"技术,在该软件中用"生死单元"技术进行切削 加工有限元仿真的示例如图6所示。通过"生死单 元"方法能够完成几何仿真与物理仿真的结合,实 现了提高仿真效率的同时减小仿真精度的损失。

采用"生死单元"技术实现几何-物理结合方法 进行切削加工全过程仿真可以研究整个切削加工 过程中刀具与工件接触作用的累加效果,能够充分 发挥有限元仿真的优势。Zhao等^[3]提出了一种基 于变形力推算残余应力场的无损方法,用有限元仿 真方法验证了所提出方法的准确性。在进行有限 元仿真时,他们采用生死单元技术去除了待切削区 域的材料。Zhang等^[129]利用生死单元技术建立了 钛合金钻孔和螺旋铣孔的三维瞬态温度场和材料 去除模型。他们研究了材料去除机理及不同工艺 参数对材料温度场分布的影响,如图7(a)所示。

(b) Finite element simulation of thin-walled parts cutting 图 7 "生死单元"在切削加工有限元仿真中的应用 Fig.7 Application of "birth-death element" technology in finite element simulation

Awan等^[130]对薄壁件机械加工过程进行了有限元 仿真,采用生死单元技术研究了不同区域加工顺序 对工件残余应力的影响,如图7(b)所示。龚智鹏 等^[131]采用生死单元技术研究了薄壁件的装夹方案 和加工顺序对零件整体变形的影响,与试验方法相 比误差约为13.9%。

但目前由于技术手段和计算机硬件性能的限制,实现几何-物理结合方法在仿真时做了大量简化。若深入研究几何-物理结合仿真方法并且提高 计算机硬件性能,对零件切削加工质量的仿真预测 将会更加精准。

4 展 望

近年来切削加工有限元仿真技术得到了广泛研究,它与实验方法相比节约了大量的时间和成本,能对切削加工过程进行定性和定量分析,例如:研究加工变形区域应力分布规律,优化切削加工工艺参数等。但是,随着产品制造质量的不断提高,切削加工有限元仿真需进一步提高求解精度和求解效率来满足加工需求。建立更加完善的材料本构模型来反映材料应力-应变关系以提高求解精度,开发更加合理的局部网格自适应动态细化方法

来提高求解效率,进一步加强几何-物理仿真结合 的准确度以完全实现切削加工全过程动态仿真。 因此,使切削加工全过程动态仿真完全走向实际应 用还有3方面需要加强。

(1)建立一个兼顾通用性与准确性的材料本构 模型。随着多种新型难加工金属材料的研制,其对 应变速率的敏感性存在差异。在有限数据范围内 针对某一材料构建的本构模型预测精度虽高,但其 通用性也受限,缺少一种适用于多种材料的本构模 型。目前唯象本构模型和基于物理机制本构模型 的修正模型越来越多,但在模型修正时未考虑其在 数值模拟中的应用是否便利,难以应用在切削加工 全过程仿真。唯象本构模型可以有效预测宏观变 形,基于物理机制的本构模型有较强的宏-微观变 形预测能力,但现有的本构模型都未在材料的微观 层面结合宏观力学对应变率机理展开研究。因此, 需要深化应变速率对材料动态力学响应的作用机 理研究,采用多尺度分析方法,建立一个宏-微观耦 合的本构模型,以准确描述应变速率敏感性及其他 特征各异的材料,重塑本构模型通用性与准确性的 平衡。同时,数据挖掘方法正在成为从理论中揭开 材料应力-应变关系的有效手段,其能够从试验或 仿真结果中抓取关键因素并建立联系,有望替代传 统用函数关系表达材料本构模型的模式。

(2)开发更加合理的局部网格自适应动态细 化方法。现阶段,局部网格自适应动态细化方法包 括跟随刀具移动位置判断细化区域的几何细化方 法和根据仿真物理量是否达到给定阈值判定细化 区域的物理细化方法。几何细化方法的优点是随 着刀具移动动态选取细化区域,但几何细化方法的 网格细化尺寸是预先设定的,在仿真过程中会出现 细化级数不合理的现象,需多次调整才能获得满足 要求的细化尺寸。物理细化方法的优点是网格细 化程度与物理量相关,只需设置相关阈值即可获得 合理的细化尺寸。但物理细化方法的细化区域不 固定,在仿真过程中会出现细化区域与刀具运动轨 迹产生偏差的情况。为此,可以在现有的网格自适 应动态细化方法基础上开发一种兼顾几何细化和 物理细化的细化方法,提高局部网格细化的合理性 和细化区域的准确性,进一步提高切削加工有限元 仿真的求解效率。

(3)提高几何-物理仿真结合方法的准确性。 现有几何-物理仿真结合技术多数是采用"生死单 元"实现,但其在实现切削加工全过程仿真时进行 了大量简化,在计算效率提高的同时亦带来了新的 问题。例如:金属切削加工过程会产生让刀效应, 但在几何仿真部分预先设置了切削区域,无法根据 材料去除后网格变形情况来重新调整网格去除区域。为此,可以在网格自适应细化技术的基础上开发一种自适应"生死单元"技术,对已变形网格再进行二次细化,在二次细化的基础上重新选择下一步待去除网格区域。

另外,随着物联网、大数据等新一代信息技术 与制造业的融合与发展,数字孪生的需求越来越强 烈,实现切削加工过程的数字孪生是未来发展的必 然趋势。通过数字孪生技术将物理空间与虚拟空 间建立联系,在虚拟空间中完成切削加工的全过程 动态仿真,能实时映射物理空间的切削加工状态, 实现对加工过程的实时调控,大幅度提高加工质量 和安全性。目前,在虚拟空间中可以实现切削加工 的几何仿真,但难以实现物理仿真。主要问题是切 削加工全过程动态仿真的实时性难以满足数字孪 生需求,以及切削加工过程中物理量在线检测技术 和数据实时映射技术不完善。因此,对软件来说, 可以借助机器学习开发一种更高效率的切削加工 有限元仿真方法,实现切削加工的实时仿真;对于 硬件来说,仿真运算和数据处理需要更高性能的计 算机提供支撑,才能有效降低物理空间与虚拟空间 之间信息交互的延迟时间。

5 结 论

本文详细回顾和讨论了切削加工有限元仿真 的研究现状。首先在物理因素介入的物理仿真层 面上介绍了影响仿真精度和仿真效率的关键因素, 包括:材料本构模型、本构模型参数选取方法和网 格划分技术。然后讨论了单纯考虑几何尺寸改变 的几何仿真特点,包括几何仿真的计算原理和发展 脉络,几何仿真用于仿真切削加工过程是否存在过 切、欠切和干涉碰撞等状况。随后论述了几何-物 理仿真方法结合的切削加工有限元仿真技术的研 究现状。总之,建立完善的材料本构模型、获取精 准的材料本构模型参数、开发合理的网格划分方法 是实现高精度和高效率切削加工物理仿真的关键, 将几何仿真和物理仿真结合实现切削加工全过程 动态仿真后,能够更深入且全面地探究切削机理、 预测加工表面质量和控制加工变形等,为提高切削 加工产品质量和降低成本作出重大贡献。

参考文献:

[1] DONG W, JIMENEZ X A, TO A C. Temperature-dependent modified inherent strain method for predicting residual stress and distortion of Ti6Al4V walls manufactured by wire-arc directed energy deposition[J]. Additive Manufacturing, 2023, 62: 103386.

- [2] ZHANG X, CHENG Y, LV M. Study on high-speed vibration cutting of titanium alloy considering cutting edge radii[J]. International Journal of Advanced Manufacturing Technology, 2023, 124(10): 3327-3342.
- [3] ZHAO Z, LIU C, LI Y. A new method for inferencing and representing a workpiece residual stress field using monitored deformation force data[J]. Engineering, 2023, 22(4):9-59.
- [4] JIANG X, KONG X, HE S. Modeling the superposition of residual stresses induced by cutting force and heat during the milling of thin-walled parts[J]. Journal of Manufacturing Processes, 2021, 68: 356-370.
- [5] WEBER D, KIRSCH B, JONSSON J E. Simulation based compensation techniques to minimize distortion of thin-walled monolithic aluminum parts due to residual stresses[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 38: 427-441.
- [6] CHEN G, CAUDILL J, REN C. Numerical modeling of Ti-6Al-4V alloy orthogonal cutting considering microstructure dependent work hardening and energy density-based failure behaviors[J]. Journal of Manufacturing Processes, 2022, 82: 750-764.
- [7] LIANG X, LIU Z, WANG B. Friction behaviors in the metal cutting process: State of the art and future perspectives[J]. International Journal of Extreme Manufacturing, 2022(5):012002.
- [8] ULLAH I, ZHANG S, ZHANG Q. Numerical investigation on serrated chip formation during high-speed milling of Ti-6Al-4V alloy[J]. Journal of Manufacturing Processes, 2021, 71: 589-603.
- [9] WANG B, LIU Z, CAI Y. Effects of tool angles and uncut chip thickness on consumption of plastic deformation energy during machining process[J]. Journal of Manufacturing Processes, 2023, 87: 123-132.
- [10]何临江.Ti₂AlNb金属间化合物切削加工基础研究
 [D].南京:南京航空航天大学,2018.
 HE Linjiang. Fundamental research on machining of Ti₂AlNb intermetallic alloys[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
- [11] 袁康博,姚小虎,王瑞丰.金属材料的率-温耦合响应 与动态本构关系综述[J].爆炸与冲击,2022,42 (9):1-35.

YUAN Kangbo, YAO Xiaohu, WANG Ruifeng. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials[J]. Explosion and Shock Waves, 2022, 42(9): 1-35.

[12] SUN Y, LI G, HE Z. The advance of research on constitutive model used in finite element simulation of metal cutting[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(9): 4921-4945.

- [13] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.
- [14] DECKE J, ENGELHARDT A, RAUCH L. Predicting flow stress behavior of an AA7075 alloy using machine learning methods [J]. Crystals, 2022, 12(9): 1281.
- [15] TANG M, ZHANG J, YUE J. Thermomechanical behaviour modelling and microstructure evolution of high Cr-Co-Mo aerospace bearing steel[J]. Materials Science and Technology, 2023, 39(8): 994-1009.
- [16] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Proceedings of the 7th International Symposium on Ballistic, 1983, 21: 541-547.
- [17] SAVAEDI Z, MOTALLEBI R, MIRZADEH H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys
 [J]. Journal of Alloys and Compounds, 2022, 903: 163964.
- [18] SHANG H, WU P, LOU Y. Machine learning-based modeling of the coupling effect of strain rate and temperature on strain hardening for 5182-O aluminum alloy [J]. Journal of Materials Processing Technology, 2022, 302: 117501.
- [19] GURUSAMY M, RAO B C. A modified Zerilli Armstrong constitutive model for simulating severe plastic deformation of a steel alloy [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236 (8) : 1022-1036.
- [20] BONDNER S R, PARTOM Y. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Journal of Applied Mechanics, 1975, 42 (2): 385-389.
- [21] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.
- [22] STEINBERG D J, COCHRAN S G, GUINAN M
 W. A constitutive model for metals applicable at highstrain rate[J]. Journal of Applied Physics, 1980, 51
 (3): 1498-1504.
- [23] STEINBERG D J, LUND C M. A constitutive model for strain rates from 10⁻⁴ to 10⁶ s⁻¹[J]. Journal of Applied Physics, 1989, 65(4): 1528-1533.
- [24] MECKING H, KOCKS U F. Kinetics of flow and strain-hardening[J]. Acta Metallurgica, 1981, 29: 1865-1875.

- [25] FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metallurgica, 1988, 36(1): 81-93.
- [26] VOYIADJIS G Z, ABED F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency[J]. Mechanics of Materials, 2005, 37(2/3): 355-378.
- [27] SHOKRY A, GOWID S, MULKI H. On the prediction of the flow behavior of metals and alloys at a wide range of temperatures and strain rates using Johnson-Cook and modified Johnson-Cook-Based Models: A review[J]. Materials, 2023, 16(4): 1574.
- [28] WANG Y, XING J, ZHOU Y. Tensile properties and a modified s-Johnson-Cook model for constitutive relationship of AA7075 sheets at cryogenic temperatures [J]. Journal of Alloys and Compounds, 2023, 942: 169044.
- [29] LEROCH S, EDER S J, VARGA M. Material point simulations as a basis for determining Johnson-Cook hardening parameters via instrumented scratch tests [J]. International Journal of Solids and Structures, 2023, 267: 112146.
- [30] TEKKAYA B, MEURER M, DÖLZ M. Modeling of microstructural workpiece rim zone modifications during hard machining[J]. Journal of Materials Processing Technology, 2023, 311: 117815.
- [31] SOORI M, AREZOO B. Minimization of surface roughness and residual stress in abrasive water jet cutting of titanium alloy Ti6Al4V[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. DOI: 10.1177/ 09544089231157972.
- [32] SOORI M, AREZOO B. Cutting tool wear minimization in drilling operations of titanium alloy Ti-6Al-4V
 [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. DOI: 10.1177/13506501231158259.
- [33] SIMA M, ÖZEL T. Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V [J]. International Journal of Machine Tools and Manufacture, 2010, 50(11): 943-960.
- [34] GU L, WANG M. Experimental and analytical study on adiabatic shear localized fracture characteristics in high-speed machining of pure titanium alloy [J]. The International Journal of Advanced Manufacturing Technology, 2022, 119: 5079-5093.
- [35] DUCOBU F, RIVIÈRE-LORPHÈVRE E, FILIPPI E. Material constitutive model and chip separation cri-

terion influence on the modeling of Ti6Al4V machining with experimental validation in strictly orthogonal cutting condition[J]. International Journal of Mechanical Sciences, 2016, 107: 136-149.

- [36] CALAMAZ M, COUPARD D, GIROT F. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V [J]. International Journal of Machine Tools and Manufacture, 2008, 48: 275-288.
- [37] LIU R, MELKOTE S, PUCHA R. An enhanced constitutive material model for machining of Ti-6Al-4V alloy[J]. Journal of Materials Processing Technology, 2013, 213(12): 2238-2246.
- [38] NEMAT-NASSER S, GUO W, NESTERENKO V F. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: Experiments and modeling [J]. Mechanics of Materials, 2001, 33 (8) : 425-439.
- [39] KHAN A S, HUANG S. Experimental and theoretical study of mechanical behavior of 11-aluminum in the strain rate range 10⁻⁵—10⁴ s⁻¹[J]. International Journal of Plasticity, 1992, 8(4): 397-424.
- [40] ZHANG H, WEN W, CUI H. A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates [J]. Materials Science and Engineering: A, 2009, 527: 328-333.
- [41] SAMANTARAY D, MANDAL S, BORAH U. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium modified austenitic stainless steel [J]. Materials Science and Engineering: A, 2009, 526: 1-6.
- [42] GAO C Y, ZHANG L C. A constitutive model for dynamic plasticity of FCC metals [J]. Materials Science and Engineering: A, 2010, 527: 3138-3143.
- [43] YUAN K, GUO W, LI P. Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: Testing and constitutive modeling[J]. Mechanics of Materials, 2019, 135: 13-25.
- [44] HASHASH Y M A, JUNG S, GHABOUSSI J. Numerical implementation of a neural network based material model in finite element analysis[J]. International Journal for Numerical Methods in Engineering, 2004, 59(7): 989-1005.
- [45] LEFIK M, SCHREFLER B A. Artificial neural network as an incremental non-linear constitutive model for a finite element code[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 3265-3283.
- [46] ZOPF C, KALISKE M. Numerical characterisation of uncured elastomers by a neural network based ap-

proach[J]. Computers & Structures, 2017, 182: 504-525.

- [47] RAO K P, PRASAD Y K D V. Neural network approach to flow stress evaluation in hot deformation[J].
 Journal of Materials Processing Technology, 1995, 53 (3): 552-566.
- [48] HODGSON P D, KONG L X, DAVIES C H J. The prediction of the hot strength in steels with an integrated phenomenological and artificial neural network model[J]. Journal of Materials Processing Technology, 1999, 87(1): 131-138.
- [49] JI G, LI F, LI Q. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel [J]. Materials Science and Engineering: A, 2011, 528: 4774-4782.
- [50] SABOKPA O, ZAREI-HANZAKI A, ABEDI H R. Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy[J]. Materials & Design, 2012, 39: 390-396.
- [51] HAGHDADI N, ZAREI-HANZAKI A, KHALE-SIAN A R. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy[J]. Materials & Design, 2013, 49: 386-391.
- [52] ABUEIDDA D W, KORIC S, SOBH N A. Deep learning for plasticity and thermo-viscoplasticity[J]. International Journal of Plasticity, 2021, 136: 102852.
- [53] SHROT A, BÄKER M. Is it possible to identify Johnson-cook law parameters from machining simulations[J]. International Journal of Mater Form, 2010, 3(1): 443-446.
- [54] 刘战强,张克国.J-C本构参数对绝热剪切影响的敏感性分析[J] 航空学报,2011,32(11):2140-2146.
 LIU Zhanqiang, ZHANG Keguo. Sensitivity analysis of Johnson-cook materiall constants on adiabatic shear
 [J]. Acta Aeronautica et Astronautic Sinica, 2011,32 (11):2140-2146.
- [55] PEREIRA J C, ARANZABE J, TABOADA M C. Analysis of microstructure and mechanical properties in As-built/As-cast and heat-treated conditions for IN718 alloy obtained by selective laser melting and investment casting processes[J]. Crystals, 2021, 11 (10): 1196.
- [56] ÖZEL T, KARPAT Y. Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms[J]. Materials and Manufacturing Processes, 2007, 22(5): 659-667.
- [57] JASPERS S P F C, DAUTZENBERG J H. Material behaviour in conditions similar to metal cutting: Flow stress in the primary shear zone[J]. Journal of Materi-

als Processing Technology, 2002, 122(2): 322-330.

- [58] MEYER H W, KLEPONIS D S. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration[J]. International Journal of Impact Engineering, 2001, 26(1): 509-521.
- [59] MOHOTTI D, ALI M, NGO T. Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading[J]. Materials & Design, 2014, 53: 830-837.
- [60] SHATLA M, KERK C, ALTAN T. Process modeling in machining. Part I: Determination of flow stress data [J]. International Journal of Machine Tools and Manufacture, 2001, 41(10): 1511-1534.
- [61] KLOCKE F, LUNG D, BUCHKREMER S. Inverse identification of the constitutive equation of inconel 718 and AISI 1045 from FE machining simulations [J]. Procedia CIRP, 2013, 8: 212-217.
- [62] BÄKER M. A new method to determine material parameters from machining simulations using inverse identification[J]. Procedia CIRP, 2015, 31: 399-404.
- [63] AGMELL M, AHADI A, STÅHL J. Identification of plasticity constants from orthogonal cutting and inverse analysis[J]. Mechanics of Materials, 2014, 77: 43-51.
- [64] SUBRAMANIAN G, PRASANTH A, RAVEEN-DRA V V S. An algorithm for two- and three-dimensional automatic structured mesh generation [J]. Computers & Structures, 1996, 61 (3) : 471-477.
- [65] ZHANG Y, JIA Y, WANG S S Y. An improved nearly-orthogonal structured mesh generation system with smoothness control functions[J]. Journal of Computational Physics, 2012, 231(16): 5289-5305.
- [66] GARIMELLA R V. Mesh data structure selection for mesh generation and FEA applications[J]. International Journal for Numerical Methods in Engineering, 2002, 55(4): 451-478.
- [67] XU K, CHEN G. Hexahedral mesh structure visualization and evaluation[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25 (1) : 1173-1182.
- [68] LU H, WU Y, CHEN S. A new method based on SOM network to generate coarse meshes for overlapping unstructured multigrid algorithm[J]. Applied Mathematics and Computation, 2003, 140 (2) : 353-360.
- [69] LÖHNER R, CAMBEROS J, MERRIAM M. Parallel unstructured grid generation [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 95 (3): 343-357.
- [70] LARWOOD B G, WEATHERILL N P, HASSAN

O. Domain decomposition approach for parallel unstructured mesh generation[J]. International Journal for Numerical Methods in Engineering, 2003, 58(2): 177-188.

- [71] ZHENG Z, GUO J, GAO R. Research on the cutting force and serrated chips in ultra-precision micro-grooving of SLM Ti6Al4V alloy[J]. Micromachines, 2023, 14(3): 533.
- [72] BERMUDO GAMBOA C, ANDERSSON T, SVENSSON D. Modeling of the fracture energy on the finite element simulation in Ti6Al4V alloy machining[J]. Scientific Reports, 2021, 11(1):18490.
- [73] 黄丽丽.有限元三维六面体网格自动生成与再生成 算法研究及其应用[D].济南:山东大学,2010.
 HUANG Lili. Reach on the algorithm for 3D hexahedral mesh auto matic generation and regeneration and its applications[D]. Jinan: Shandong University, 2010.
- [74] 杨振,王洋,王禹封.三维网格动态细化技术在切削 仿真中的应用[J].南京航空航天大学学报,2023,55
 (1):80-88.
 YANG Zhen, WANG Yang, WANG Yufeng, et al.

Application of 3D mesh dynamic refinement technology in cutting simulation[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(1): 80-88.

[75] 李宗旺.基于 Abaqus 的二维切削仿真局部网格动态 细化及前处理关键技术研究[D].南京:南京航空航 天大学,2020.

LI Zongwang. Research on key techniques of local mesh dynamic refinement and preprocessing in 2D cutting simulation based on abaqus[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.

- [76] LANGER U, MATCULEVICH S, REPIN S. Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems [J]. Computers & Mathematics with Applications, 2019, 78(8): 2641-2671.
- [77] TURCKE D J. Guidelines for selecting finite element grids based on an optimization study[J]. Computers & Stuctures, 1974, 4: 499-519.
- [78] ZHANG J, CHEROUAT A, BOROUCHAKI H. 3D adaptive remeshing procedure and its application to large deformation problems [J]. Key Engineering Materials, 2012, 498: 199-209.
- [79] OHTSUBO H, KITAMURA M. Element by element a posteriori error estimation and improvement of stress solutions for two-dimensional elastic problems
 [J]. International Journal for Numerical Methods in Engineering, 1990, 29(2): 223-244.
- [80] SHEN C, GAO S, WANG R. Hexahedral mesh adaptation based on posterior-error estimation [J]. Engi-

neering with Computers, 2022, 38(5): 4337-4348.

- [81] DIVI S C, VAN ZUIJLEN P H, HOANG T. Residual-based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B-splines[J]. Journal of Mechanics, 2022, 38: 204-237.
- [82] BABUŠKA I, RHEINBOLDT W C. A posteriori error estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering, 1978, 12(10): 1597-1615.
- [83] BABUŠKA I, MILLER A. The post-processing approach in the finite element method-I: Calculation of displacements, stresses and other higher derivatives of the displacements[J]. International Journal for Numerical Methods in Engineering, 1984, 20(6): 1085-1109.
- [84] BABUŠKA I, MILLER A. The post-processing approach in the finite element method-II: The calculation of stress intensity factors[J]. International Journal for Numerical Methods in Engineering, 1984, 20(6): 1111-1129.
- [85] BABUŠKA I, MILLER A. The post-processing approach in the finite element method-Part 3: A posteriori error estimates and adaptive mesh selection [J]. International Journal for Numerical Methods in Engineering, 1984, 20(12): 2311-2324.
- [86] LADEVEZE P, PELLE J P. Accuracy in finite element computation for eigenfrequencies[J]. International Journal for Numerical Methods in Engineering, 1989, 28(8): 1929-1949.
- [87] YANG F T, RASSINEUX A, LABERGERE C. A 3D h-adaptive local remeshing technique for simulating the initiation and propagation of cracks in ductile materials[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 330: 102-122.
- [88] FRIBERG P O. An error indicator for the generalized eigenvalue problem using the hierarchical finite element method [J]. International Journal for Numerical Methods in Engineering, 1986, 23(1): 91-98.
- [89] WANG Z, YU T, BUI T Q. Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM
 [J]. Advances in Engineering Software, 2016, 102: 105-122.
- [90] XING C, YU T, SUN Y. An adaptive phase-field model with variable-node elements for fracture of hyperelastic materials at large deformations[J]. Engineering Fracture Mechanics, 2023, 281: 109115.
- [91] DEHGHAN M, ABBASZADEH M. Error estimate of finite element/finite difference technique for solution of two-dimensional weakly singular integro-partial differential equation with space and time fractional derivatives [J]. Journal of Computational and Applied

Mathematics, 2019, 356: 314-328.

- [92] BONNEY M S, EVANS R, ROUSE J. Goal oriented error estimation in multi-scale shell element finite element problems [J]. Advanced Modeling and Simulation in Engineering Sciences, 2021, 8(1):1-31.
- [93] LABERGERE C, RASSINEUX A, SAANOUNI K. Numerical simulation of continuous damage and fracture in metal-forming processes with 2D mesh adaptive methodology[J]. Finite Elements in Analysis and Design, 2014, 82: 46-61.
- [94] ZHANG J, CHEROUAT A, BOROUCHAKI H. 3D thermo-mechanical simulation coupled with adaptive remeshing for metal milling[J]. Advanced Materials Research, 2013, 698: 11-20.
- [95] VOELCKER H B, HUNT W A. The role of solid modelling in machining-process modelling and NC verification [J]. SAE International Congress and Exposition, 1981, 2: 1-8.
- [96] ZHENG F, HAN X, HUA L. A semi-analytical model for cutting force prediction in face-milling of spiral bevel gears[J]. Mechanism and Machine Theory, 2021, 156: 104165.
- [97] NEHRING-WIRXEL J, TRETTNER P, KOB-BELT L. Fast exact booleans for iterated CSG using octree-embedded bSPs [J]. Computer-Aided Design, 2021, 135: 103015.
- [98] WANG W, LI Q, JIANG Y. A novel 3D surface topography prediction algorithm for complex ruled surface milling and partition process optimization [J]. International Journal of Advanced Manufacturing Technology, 2020, 107: 3817-3831.
- [99] LI J G, DING J, GAO D. Quadtree-array-based workpiece geometric representation on three-axis milling process simulation [J]. International Journal of Advanced Manufacturing Technology, 2010, 50: 677-687.
- [100]CHAPPEL L T. The use of vectors to simulate material removed by numerically controlled milling[J]. Comput Aided Design, 1983, 15(3): 156-158.
- [101]WALSTRA W H, BRONSVOORT W F, VER-GEEST J S M. Interactive simulation of robot milling for rapid shape prototyping [J]. Computers & Graphics, 1994, 18(6): 861-871.
- [102]LIU S Q, ONG S K, CHEN Y P. Real-time, dynamic level-of-detail management for three-axis NC milling simulation[J]. Computer-Aided Design, 2006, 38 (4): 378-391.
- [103]ABDEL-MALEK K, YANG J, BLACKMORE D. On swept volume formulations: Implicit surfaces[J]. Computer-Aided Design, 2001, 33(1): 113-121.
- [104]BLACKMORE D, LEU M C, SHIH F. Analysis and modelling of deformed swept volumes[J].

Computer-Aided Design, 1994, 26(4): 315-326.

- [105]BLACKMORE D, LEU M C, WANG L P. The sweep-envelope differential equation algorithm and its application to NC machining verification[J]. Computer Aided Design, 1997, 29(9): 629-637.
- [106]SONAWANE H A, JOSHI S S. Analytical modeling of chip geometry in high-speed ball-end milling on-inclined inconel-718 workpieces[J]. Journal of Manu-facturing Science and Engineering, 2015, 137: 11001-11005.
- [107]CHIOU C J, LEE Y S. Swept surface determination for five-axis numerical control machining [J]. International Journal of Machine Tools and Manufacture, 2002, 42(14): 1497-1507.
- [108]MA H, LIU W, ZHOU X. High efficiency calculation of cutter-workpiece engagement in five-axis milling using distance fields and envelope theory [J]. Journal of Manufacturing Processes, 2021, 68: 1430-1447.
- [109]FLEISIG R V, SPENCE A D. Techniques for accelerating B-rep based parallel machining simulation [J]. Computer-Aided Design, 2005, 37(12): 1229-1240.
- [110]LI Z, ZHU L. Envelope surface modeling and tool path optimization for five-axis flank milling considering cutter runout [J]. Journal of Manufacturing Science and Engineering, 2014, 136: 41021.
- [111]ROTH D, BEDI S, ISMAIL F. Surface swept by a toroidal cutter during 5-axis machining[J]. Computer-Aided Design, 2001, 33(1): 57-63.
- [112]STRENOWSIKI J S, CARROLL J T. An orthogonal metal cutting model based on an eulerian finite element method, manufacturing process, machines and systems [C]//Proceedings of 13NSF Conference in Production Research and Technology.[S.l.]:NSF, 1986: 261-264.
- [113]HERBERT S, KLAUS B. Optimization of precision machining by simulation of the cutting process[J]. Annals of CIRP, 1993, 32(1): 55-58.
- [114]GONG Z, SINGH M, WEI D. An advanced technique for determining NC machining tool path to fabricate drawing die surface considering non-uniform thickness distribution in stamped blank [J]. International Journal of Advanced Manufacturing Technology, 2020, 111: 1445-1455.
- [115]WANG L, YUAN X, SI H. A cutting force model based on compensated chip thickness in five-axis flank milling[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104 (1/2/3/4) : 1413-1423.
- [116]LEI H, CHENG J, YANG D. Effect of pre-existing micro-defects on cutting force and machined surface quality involved in the ball-end milling repairing of flawed KDP crystal surfaces [J]. Materials, 2022, 15

(21): 7407.

- [117] ZHANG X, EHMANN K F, YU T. Cutting forces in micro-end-milling processes[J]. International Journal of Machine Tools and Manufacture, 2016, 107: 21-40.
- [118]MA C, MA J, SHAMOTO E. Analysis of regenerative chatter suppression with adding the ultrasonic elliptical vibration on the cutting tool[J]. Precision Engineering, 2011, 35(2): 329-338.
- [119]ZHOU G, LU Q, XIAO Z. Cutting parameter optimization for machining operations considering carbon emissions [J]. Journal of Cleaner Production, 2019, 208: 937-950.
- [120]LAI M, ZHANG X D, FANG F Z. Study on critical rake angle in nanometric cutting [J]. Applied Physics A, 2012, 108(4): 809-818.
- [121]龚智鹏.基于 Abaqus 的铣削仿真前处理关键技术研究及二次开发[D].南京:南京航空航天大学,2017.
 GONG Zhipeng. Study on the key technologies of pre-treatment of milling simulation with Abaqus and redevelopment [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
- [122]YU H, LI S J, LIU Y X. Finite element simulation for residual stresses in weling process [J]. Key Engineering Materials, 2007, 353-358: 1915-1918.
- [123] ELHORINY M, WENZELBURGER M, KILL-INGER A. Finite element simulation of residual stress development in thermally sprayed coatings[J]. Journal of Thermal Spray Technology, 2017, 26(4): 735-744.
- [124]SUN F, LI Y, FU Y. Study on the influence of laser power variation on the temperature field of laser additive manufacturing airport fuel supply pipe network [J]. Optik, 2020, 221: 165301.
- [125]LI W, YU R, HUANG D. Numerical simulation of multi-layer rotating arc narrow gap MAG welding for

medium steel plate [J]. Journal of Manufacturing Processes, 2019, 45: 460-471.

- [126]LI J, ZHOU X, BROCHU M. Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: A review [J]. Additive Manufacturing, 2020, 31: 100989.
- [127]SUN Y, YAN C, WU S. Geometric simulation of 5-axis hybrid additive-subtractive manufacturing based on Tri-dexel model [J]. International Journal of Advanced Manufacturing Technology, 2018, 99 (9/10/ 11/12): 2597-2610.
- [128] WEBER D, KIRSCH B, CHIGHIZOLA C R. Investigation on the scale effects of initial bulk and machining induced residual stresses of thin walled milled monolithic aluminum workpieces on part distortions: Experiments and finite element prediction model [J]. Procedia CIRP, 2021, 102: 337-342.
- [129]ZHANG Y, QIAO H, ZHAO J. Research on the mechanism of micro-water jet-guided laser precision drilling in metal sheet[J]. Micromachines, 2021, 12(3): 343.
- [130] AWAN W S, MABROUKI T. Numerical and experimental investigations of post-machining distortions in thin machined structures considering material-induced residual stress [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(2): 509-521.
- [131] 龚智鹏, 苏宏华, 何临江. 2124 铝合金桁梁薄壁件铣 削变形仿真优化[J]. 机械制造与自动化, 2018, 47 (3): 149-152.

GONG Zhipeng, SU Honghua, HE Linjiang. Simulation of milling deformation of 2124 Aluminum thin-wall truss beam structure and its process optimization [J]. Mechanical Manufacturing and Automation, 2018, 47(3): 149-152.

(编辑:陈珺)