DOI:10.16356/j.1005-2615.2019.01.008

第51卷第1期

2019年2月

民用飞机外翼与中央翼下壁板对接形式

汤 平

(上海飞机设计研究院,上海,201210)

摘要:飞机外翼与中央翼的对接结构承担着传递外翼载荷到中机身和中央翼的重任。本文首先梳理了先进民用 客机的下壁板对接形式,然后给出了不同下壁板对接结构的设计要点,最后分析了典型机型下壁板对接结构的 传力特性,指出下壁板结构的材料类型会影响对接结构的设计。

关键词:对接结构;下壁板;长桁端头;开槽

中图分类号:V224.1 文献标志码:A

文章编号:1005-2615(2019)01-0048-07

Research on Lower Panels' Joints of Civil Aircraft Wing and Center Wing

TANG Ping

(Shanghai Aircraft Design Research Institute, Shanghai, 201210, China)

Abstract: The wing root joint of civil aircraft wing and center wing is essential in transferring the load from the wing to the mid-fuselage and the center wing. In this study, different forms of the lower panels' joints of civil aircraft wing and center wing are summarized. The key points of the design of lower panels' joints are given. Lastly, the load transferring characteristics of typical civil aircraft are analyzed, and it is shown that the material type of lower wing panels will affect the design of joints.

Key words: joint; lower panel; stringer end; notch

目前,越来越多的民用飞机机翼下壁板采用复 合材料,下壁板对接结构也从全金属结构转变为金 属和复合材料混合结构。本文分析了民用飞机外 翼与中央翼下壁板对接的各种形式,给出了下壁板 对接结构的设计要点,指出下壁板结构的材料类型 会影响对接结构的设计。

1 对接界面和载荷传递

1.1 中央翼及对接面形式

外翼与中央翼的对接形式和中央翼的设计有 关。通常中央翼有两类形式。一类如图1所示,在 左右对接肋间为等直段,中央翼独立成为一部件, 对接面在1号肋位置。另一类是如图2和图3所示 的一些特殊形式。图2中麦道某型飞机的中央翼 并不是等直段,而是分成两半分别与两侧外翼相 连,对接面在0号肋位置。图3中庞巴迪某系列飞 机的外翼对接面分散,上下壁板由外翼延伸至0号 肋对接,中央翼范围仍在左右1号肋间。由于上反 从0号肋开始,故左右对接肋间不是等直段。目前 主流的空客和波音系列客机的中央翼均为图1所 示的形式,在机身两侧通过对接肋(1号肋)对接, 有明确的对接面。本文重点对图1所示的外翼与 中央翼的对接形式进行研究。

收稿日期:2018-09-30;修订日期:2018-12-07

通讯作者:汤平,男,高级工程师,E-mail:tangping@comac.cc。

引用格式:汤平.民用飞机外翼与中央翼下壁板对接形式[J].南京航空航天大学学报,2019,51(1):48-54. TANG Ping. Research on Lower Panels' Joints of Civil Aircraft Wing and Center Wing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019,51(1):48-54.

图2 麦道飞机中央翼及对接面示意图

Fig. 2 Aaircraft central wing and joint interface of McDonnell Douglas

1.2 下壁板载荷传递

飞机在飞行时,一般来说外翼的上壁板受压,下 壁板受拉。如图4所示,左右外翼下壁板的拉力通过 对接肋下缘条传递到肋腹板和中央翼下壁板,中央 翼下壁板上左右外翼传来的拉力相互平衡。外翼扭 矩使得下壁板根部产生剪切力,通过对接肋下缘条 传递到中央翼下壁板,并由机身龙骨梁平衡^[1]。

飞机落地时,没有载客的负重,外翼下壁板靠近

Fig. 4 Load on the lower panel of docking zone of the central wing and the outer wing

对接肋处所受拉力也相对较小。因此在飞机使用周 期内,外翼和中央翼下壁板承受周期性的载荷。下 壁板对接结构设计必须考虑结构疲劳因素^[1]。

2 下壁板对接形式

在典型下壁板对接结构中,蒙皮都与对接肋下 缘条搭接,但长桁与下缘条有搭接和对接两种形式。

2.1 长桁搭接

2.1.1 长桁腹板插入下缘条

如图 5 所示,长桁可以是"上"形或"工"形,长 桁端头有部分腹板切去并斜削。下缘条在外翼和 中央翼的两侧开槽。装配时长桁腹板插入槽内。

图 5 长桁搭接长桁腹板插入下缘条示意图 Fig. 5 Lap joint of stringer and triform

此对接形式的特点及设计注意点如下:

(1)下缘条航向连续部分有两排钉,有利于扭 矩传递^[2],如图5和图6所示。

(2)下缘条开槽底部和下缘条上第二排钉有 距离要求,如图6所示。

(3)下缘条开槽深度要达到能布置两排钉,有 利于载荷传递到长桁腹板。开槽深度也要达到包 含长桁斜削部分,这样才能有效地降低长桁端部应 力集中^[3],如图6所示。

Fig. 6 Depth of notch

(4)图5中长桁端头加宽部分过渡到正常等宽 部分的过渡角度 β 、图7中长桁端头腹板斜削角度 θ 都会影响应力分布^[4],经分析 $\beta \leq 35^{\circ}, 17^{\circ} \leq \theta \leq 21^{\circ[3]}$ 的长桁端头传载较好。长桁端头加宽部分侧边间 隙 $d \leq 4 \text{ mm}$ 以满足密封要求;长桁腹板底部圆角边 线到下缘条开槽底部距离 $e \geq 10 \text{ mm}, 如图7所示。$

(5)如图8所示,外翼下壁板刚心线和中央翼 下壁板刚心线交点要落在对接肋的平面上,以尽量 减小中央翼下壁板产生面外载荷,从而导致附加弯 矩^[2]。此要求适用各种下壁板对接形式。

图 8 刚心线与1亏肋半面相父示息图 Fig. 8 Intersection of natural axis and root rib plan

(6)如图9所示,外翼下壁板和对接肋腹板成闭 角,此处应考虑装配时的制孔空间,从而确定第一 排钉的位置。此要求适用各种下壁板对接形式。

图 9 闭角对外翼下壁板第一排钉的影响 Fig. 9 The first row of fastener with close angle

(7)下缘条和对接带板夹住机翼下壁板连接部分,形成双剪。

(8)对复合材料长桁,长桁腹板和下缘条开槽 之间的间隙要大于等于10mm,以满足闪电防护要 求;对金属长桁,间隙要大于等于6mm。如图5中 箭头所指间隙。

2.1.2 长桁腹板不插入下缘条

长桁腹板在端部切除部分并斜削,但不插入下 缘条,下缘条无开槽。长桁可以是"上"形或"工" 形,如图10所示。

Fig. 10 Triform without notch

此对接形式的特点及设计注意点如下:

(1)长桁腹板斜削端头会产生附加载荷^[34],对 复合材料机翼壁板,容易引起长桁缘条和蒙皮之间 的脱胶、长桁缘条分层。通常如图 10 中打铆钉 保护。

(2)无开槽限制,下缘条和对接带板的排钉连续,完整。

2.2 长桁对接

2.2.1 "上"形下缘条

长桁和下缘条对接时,由长桁接头连接长桁腹 板和下缘条。长桁可以是"Z"形,"⊥"形,"工"形, 如图11所示。

图 11 长桁对接长桁接头连长桁腹板示意图 Fig. 11 Connection of joint and stringer blade

此对接形式的特点及设计注意点如下:

(1)长桁接头与长桁腹板连接,和长桁缘条不 连接。长桁腹板连接部分加厚,长桁缘条连接部分 变窄,即长桁端头设计要有利于载荷从长桁缘条过 渡到长桁腹板。

(2) 在壁板端头,载荷分别从长桁和蒙皮传递。

(3)下缘条和对接带板夹住蒙皮形成双剪。2.2.2 "土"形下缘条

长桁是"工"形,下缘条耳片连接长桁上部缘条, 下缘条耳片起类似长桁接头的作用,如图12所示。

图 12 下缘条耳片连接长桁上部缘条示意图 Fig. 12 Connection of stringer and triform

此对接形式的特点及设计注意点如下:

(1)对复合材料长桁,由于此处长桁下部缘条 和蒙皮之间在受载后容易出现脱胶⁵⁵,在长桁下部 缘条的端头有4颗铆钉和蒙皮连接,缘条上有保护 性的能压住圆角的垫片⁶⁵,如图12所示。

(2)下缘条和对接带板夹住下壁板蒙皮,形成 双剪。

(3)长桁上部缘条在对接区加厚加宽,平缓过 渡到等直段,长桁下部缘条保持等直段。

(4)图12中长桁端头的腹板斜削角度需仔细 考虑^[7],经分析β≤15度较好,以避免长桁端头应力 集中。

(5)长桁腹板切除的转折区需特别注意,可设 计成光滑弧形过渡。如"鱼嘴形"^[8]。

3 不同机型下壁板对接分析

采用MSC.PATRAN软件建立各对接结构的 有限元模型。其中,下壁板及缘条单元采用 QUAD4壳单元模拟,紧固件由CWELD单元模 拟,模型从1号肋平面一侧截断,截面处施加对称 约束,下壁板自由端沿长桁轴线施加1mm位移 载荷。

3.1 A320飞机下壁板对接结构

如图 5 所示, A320 飞机对接形式是典型的插 入式,"丄"形下缘条,长桁腹板插入下缘条开槽 中。对接结构模型如图 13 所示。对接区的结构材 料如表1所列。

Fig. 13 Lower panel joint of A320

表1 A320飞机下壁板对接区零件材料 Tab.1 Materials for joint structure of A320

	·
零件	材料
1号肋下缘条	7175T73
对接带板	7175T7351
1号肋腹板	2024T351
外翼蒙皮	2124T351
中央翼蒙皮	2124T351
外翼长桁	2024T3511
中央翼长桁	2024T3511

A320飞机下壁板对接结构应力云图如图 14 所示。A320对接方式为典型的双剪连接,传力直 接。通过对紧固件载荷进行分析,1号肋缘条约传 递下壁板总载荷的 50%,下对接带板约传递下壁 板总载荷的 50%,传载较为均匀。

3.2 A350飞机下壁板对接结构

A350飞机下壁板对接结构和A320飞机类似, 不同的是由于长桁间距和长桁对缝限制了航向钉 排布,其长桁端头为非对称的形式,如图15所示。 对接区的结构材料见表2。

图 15 A350飞机下壁板对接示意图 Fig. 15 Lower panel joint of A350

表 2	A350飞机下壁板对接区零件材料
Tab. 2	Materials for joint structure of A350

零件	材料
1号肋下缘条	铝锂合金
对接带板	铝锂合金
1号肋腹板	铝合金
外翼蒙皮	复合材料
中央翼蒙皮	复合材料
外翼长桁	复合材料
中央翼长桁	复合材料

A350飞机下壁板对接结构应力云图如图 16 所示。A350对接方式为典型的双剪连接,传力直 接,但单个长桁存在明显的载荷偏心,钉载沿航向 分布不均匀。通过对紧固件载荷进行分析,缘条传 递总载荷的 60%,带板传递总载荷的 40%。

图 16 A350飞机下壁板对接结构应力云图 Fig. 16 Stress cloud diagram for joint structure of A350

3.3 庞巴迪飞机下壁板对接结构

庞巴迪某型飞机的对接形式如图 10 所示, "⊥"形下缘条,长桁搭接,但长桁腹板不插入下缘 条。对接结构模型如图 17 所示。对接区结构材料 见表3。

图 17 庞巴迪飞机下壁板对接示意图 Fig. 17 Lower panel joint of Bombardier aircraft

表3 庞巴迪某型飞机下壁板对接区零件材料

 Tab. 3 Materials for joint structure of Bombardier air

crait	
零件	材料
1号肋下缘条	钛合金
对接带板	钛合金
1号肋腹板	铝合金
外翼蒙皮	复合材料
中央翼蒙皮	复合材料
外翼长桁	复合材料
中央翼长桁	复合材料

庞巴迪某型飞机下壁板对接结构应力云见图 18所示。通过对紧固件载荷进行分析,1号肋缘条 传递下壁板总载荷的40%,下对接带板传递下壁 板总载荷的60%。该飞机下对接带板采用钛合金 设计,因此也相对更多地传递了下壁板载荷。

图 18 庞巴迪飞机下壁板对接结构应力云图 Fig. 18 Stress cloud diagram for joint structure of Bombardier aircraft

3.4 B737飞机的下壁板对接结构

B737 对接结构如图 11 所示,"⊥"形下缘条, 长桁和下缘条对接,长桁接头连接长桁腹板。在前 三叉接头、后三叉接头的下方有对接带板,下缘条 的下方无对接带板。对接结构模型如图 19 所示。 对接区的结构材料见表4。

Fig. 19 Lower panel joint of B737

B737飞机下壁板对接结构(无对接带板)应力 云图如图 20 所示。对紧固件载荷进行分析后发 现,壁板传来的载荷全部由1号肋缘条传递,其中 长桁接头约传递壁板总载荷的 35%。

表 4 B737 飞机下壁板对接区零件材料 Tab. 4 Materials for joint structure of B737

零件	材料
1号肋下缘条	2224-T3511
对接带板	2224-T3511
1号肋腹板	2324-T39
外翼蒙皮	2224-T3511
中央翼蒙皮	2224-T3511
外翼长桁	2224-T3511
中央翼长桁	2224-T3511

图 20 B737飞机下壁板对接结构应力云图 Fig. 20 Stress cloud diagram for joint structure of B737

3.5 B787飞机的下壁板对接结构

B787下壁板对接结构如图12所示,"土"形下 缘条,长桁上部缘条和下缘条耳片搭接,对接结构 模型见图21。对接区结构材料见表5。

Fig. 21 Lower panel joint of B787

表 5	B787飞机下壁板对接区零件材料
Tab. 5	Materials for joint structure of B78 7

零件	材料
1号肋下缘条	Ti-5Al-5V-5Mo-3Cr
对接带板	Ti-5Al-5V-5Mo-3Cr
1号肋腹板	7055-T7751
外翼蒙皮	复合材料
中央翼蒙皮	复合材料
外翼长桁	复合材料
中央翼长桁	复合材料
垫片	Ti-6Lv-4V

B787飞机下壁板对接结构应力云图如图 22 所示。B787对接方式传载均匀,长桁腹板斜削区 域无应力集中。下缘条耳片传递总载荷的 20%, 下缘条侧板传递总载荷的 35%,带板传递总载荷

的45%。

以上5种典型机型的下壁板对接结构分为长 桁和下缘条搭接、长桁和下缘条对接两种形式。对 接结构设计和钉排布都是以考虑疲劳性能为主,如 集中的传力路径上布置了双剪结构。除B737以 外,都是从前梁到后梁整个下壁板范围内使用对接 带板,形成双剪结构;B737是在局部载荷大的部位 使用对接带板。5种机型的机翼下壁板在对接区 都有加厚,其中复合材料下壁板在载荷方向上的剔 层斜率为不大于1:40。

4 对接形式的选择

机翼下壁板对接形式的选择需考虑以下几点。 (1)总体布置。外翼中央翼对接界面的位置、 机翼下壁板长桁的布置等总体因素会直接影响对 接结构的空间和传力路线等。如长桁间距偏小,会 限制插入式对接方案的选择;长桁上载荷较大会要 求长桁腹板进入布钉区等。

(2)装配方案。下壁板对接是翼身对接的一 部分,它受整体对接方案的影响,而整体对接方案 是和装配方案密切相关的。不同的下壁板对接形 式对装配路径形成的限制不同,如下缘条开槽的插 入式对接在装配时航向会形成限制。自动钻铆是 现代飞机提高装配效率的重要手段,自动钻铆需要 在尽可能大的完整配合区域布置紧固件。所以装 配路径和装配方式都会影响下壁板对接形式的 选择。

(3)对接区材料。下壁板是金属材料时,下缘 条大多选择铝合金;下壁板是复合材料时,下缘条 可选择铝合金或钛合金。铝合金可保留其制造工 艺相对简单、材料利用率相对高的优点,对接结构 可在较大的展向宽度上布置。但铝合金和复合材 料在热膨胀和电位上相容性差,需考虑结构的温度 载荷和电腐蚀防护^[9]。钛合金有和复合材料相容 性好的优点,但钛合金的切削粘刀严重、工艺复杂, 材料利用率相对较低,且成本高^[10]。在对接结构中 钛合金下缘条展向一侧通常只有两排钉,以控制宽 度减少制造和装配的难度^[11],但也限制了对接结构的布置空间。

(4)经济性。经济性是个综合的因素,包括工 艺水平,材料价格,装配效率,后期维护,供应安全 等。通常这些因素会统一到翼身对接方案考虑。

以国内对复合材料机翼壁板对接结构的研究 为例,目前国内在民用客机上尚无运用经验。从工 艺成熟性考虑,下壁板的长桁宜取"⊥"形,对接结 构可参考A350的插入式,但长桁端头可尽量设计 成对称的,下缘条的材料须在温度载荷研究和工艺 验证之后选择是铝合金或钛合金。

5 结 论

外翼与中央翼下壁板对接是翼身对接的重要 组成部分。对接区是载荷重大和集中的区域。应 从传力、制造、装配、重量等各个方面综合考虑,才 能设计出合理的结构。本文分析比较了典型机型 的下壁板对接结构,指出了结构特点和需注意的设 计细节。

对于全金属材料的下壁板对接结构,设计重点 应在有利于提高疲劳性能,如避免应力集中,尽量 减小壁板端头的附加弯矩等。

对于复合材料下壁板的混合对接结构,设计重 点除了疲劳性能外,还有温度载荷、电腐蚀防护及 复合材料受载端的细节参数;尤其设计上注意防止 附加弯矩造成长桁下部缘条和蒙皮配合界面的 分层^[12]。

从工程应用的实际出发,在相应对接结构下的 大尺寸铝合金下缘条、钛合金下缘条的制造工艺性 须得到验证。

参考文献:

- [1] 《飞机设计手册》总编委会.飞机设计手册第9册[M].北京:航空工业出版社,2000.
- [2] 《飞机设计手册》总编委会.飞机设计手册第10册[M].北京:航空工业出版社,2000.
- [3] 汤平,朱森虎,赵毅. 一种民用飞机外翼与中央翼下

壁板对接形式的研究[J]. 民用飞机设计与研究, 2014(1):30-34.

TANG Ping, ZHU Senhu, ZHAO Yi. Research on a type of lower panels' joint of civil aircraft wing and center wing [J]. Civil Aircraft Design & Research, 2014 (1):30-34.

- [4] 牛春匀.实用飞机结构应力分析及尺寸设计[M]. 北京:航空工业出版社,2009.
- [5] 崔卫军,李庆飞,李念.复合材料机翼下壁板对接区设计与分析[J].民用飞机设计与研究,2012(3):49-52.
 CUI Weijun, LI Qingfei, LI Nian. Structure joint design and analysis of composite lower wing panels[J].

sign and analysis of composite lower wing panels[J].
Civil Aircraft Design & Research, 2012(3):49-52.
[6] LIN Chunliang, MAHN R M, LEE K B. US

- 9272769B2, Joint for composite wings[S].USA: [s. n.],2016.
- [7] 中国航空研究院.复合材料结构稳定性分析指南 [M].北京:航空工业出版社,2002.
- [8] HASAN Z F, STULC J F, PRATT P R, et al. US 2017 / 0152013A1, Aircraft side of body joint [S]. USA: [s.n.], 2017.
- [9] 中国航空研究院.复合材料结构设计手册[M].北 京:航空工业出版社,2001:223-225.
- [10] 陈五一,袁跃峰. 钛合金切削加工技术研究进展[J]. 航空制造技术,2010,53(15):26-30.
 CHEN Wuyi, YUAN Yuefeng. Research progress of titanium alloy cutting technology [J]. Aeronautical Manufacturing Technology, 2010,53(15):26-30.
- [11] ALIMARDANI M, TOYSERKANI E, HUIS-SOON J P. A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process [J]. Optics and Lasers in Engineering, 2007, 45(12):1115-1130.
- [12] YANG Q D, RUGG K L, COX B N, et al. Failure in the junction region of T-stiffeners: 3D-braided vs. 2D tape laminate stiffeners[J]. International Journal of Solids an Structures, 2003, 40(7):1653-1668.

(编辑:张蓓)