摘要
半个多世纪以来,旋翼动态失速始终是直升机空气动力学领域的研究热点与难点。通过持续深入的探索,研究人员在旋翼动态失速的测量与预测、流动机理认知、流动控制以及快速建模等方面取得了重大进展。本文首先介绍了动态失速试验测量与数值分析技术的发展情况,总结了当前技术水平,并剖析了这两类技术未来的发展方向。接着,从旋翼翼型、有限翼展机翼和旋翼等多个层面,系统梳理了动态失速机理的研究进展,对现有研究进行总结与分析,指出了当前研究存在的不足与难点。然后,阐述了旋翼动态失速流动控制方法的研究现状,对比了主动与被动流动控制各自的优缺点及发展潜力。最后,介绍了旋翼动态失速半经验模型的发展,特别指出近年来迅猛发展的人工智能技术,为半经验模型降低对试验数据的依赖、提升预测精度与效率带来了新契机。模态分解、数据驱动与机器学习等先进分析技术,为直升机旋翼动态失速研究注入了新活力,推动了相关研究的发展。可以预见,人工智能技术将在未来旋翼动态失速研究中发挥重要作用。
对于常规单旋翼直升机,旋翼动态失速是制约其最大飞行速度和机动性能的关键因素之

图1 UH-60A直升机编号11029总距拉起飞行试验状态的旋翼桨盘失速区域与气动载荷分布(Rev 14, μ=0.341, nz=2.09
Fig.1 Rotor stall map and section airload of UH⁃60A during pull⁃up flight test numbered 11029(Rev 14, μ=0.341, nz=2.09
试验和计算流体动力学(Computational fluid dynamics, CFD)方法是探索旋翼动态失速机理的主要手段。其中,飞行和风洞试验能够提供真实可靠的气动载荷和流场等数据,同时受限于安全考量、试验设施的局限性及高昂的成本等多重因素,可探索的工况范围和可获取的试验数据相对有限。与此相比,CFD方法展现了更高的灵活性,它具备全面模拟气动载荷和流场信息能力,但计算精度和效率高度依赖于网格、数值格式、湍流模型等,目前采用的CFD方法仍无法完全准确反映旋翼动态失速流动。此外,旋翼流场中复杂的流动现象相互交织,给理解其背后的物理机制带来了挑战,主要包括:(1)同一桨叶上的气动环境沿径向差异显著,从桨根处的不可压缩流到桨尖处的跨声速流;(2)当直升机高速前飞时,旋翼流场中不仅存在动态失速流动,还可能出现反流、激波及其引发的气流分离;(3)桨叶旋转产生的复杂桨尖涡系和尾迹流动,可能导致桨/涡干扰(Blade⁃vortex interaction, BVI)和涡/涡干扰等气动干扰现象;(4)细长柔性的桨叶在特定飞行状态下可能会遇到强烈的气/弹耦合问题。鉴于此,在研究动态失速机理时,研究人员集中于相对纯粹的旋翼翼型动态失速,这极大地促进了对该现象的理解。同时,为了更全面地认识复杂气动现象下的三维动态失速,有限翼展机翼和旋翼动态失速也成为了研究的重点。
开展旋翼动态失速研究的最终目标是实现动态失速的有效控制,突破其对直升机性能的限制。在进行动态失速机理探索的同时,许多研究人员针对旋翼动态失速控制也进行了大量研究。旋翼动态失速控制本质上属于流动控制范畴,根据流动控制是否需要额外输入能量,可将控制方法分为主动流动控制和被动流动控制两类。被动流动控制方法无法进行实时调整,只能实现特定工况的气动性能改善,目前的研究和工程应用已接近旋翼理论性能极限。主动流动控制则能够根据使用需求实时调整控制参数,由于主动流动控制机制复杂、在旋翼上添加额外控制设备也较为困难,因此现阶段旋翼主动流动控制的实际使用仍然较少。尽管如此,主动流动控制具备极大的发展潜力和应用价值,随着研究的深入和工业技术的发展,主动流动控制技术有望实现直升机性能的重大突破。
尽管试验和CFD方法能够提供高精度的动态失速非定常载荷数据,但这些方法成本高昂且效率低下,无法满足工程应用中的快速使用需求。因此,在旋翼气动载荷预测和设计过程中,高效的半经验动态失速模型依然不可或缺。这类模型基于对动态失速过程关键流动现象的理解,通过简化物理表征的方式使用线性或非线性方程组实现快速气动力预测,在旋翼气动载荷预测和设计中展现出巨大优势。近年来,人工智能技术的发展也为动态失速模型的革新注入了新活力。
本文首先介绍了动态失速试验测量与数值分析技术的发展。紧接着,从翼型、有限翼展机翼以及旋翼等多个维度,系统梳理了动态失速机理的研究进展。随后,阐述了动态失速流动控制方法和半经验模型的研究现状。最后,对旋翼动态失速研究进行了总结,并对未来发展方向提出了若干思考与建议。
试验测量与数值分析是研究动态失速的主要手段。在过去几十年间,这两类方法均取得了长足进步。在试验领域,Gardner
测量方法 | 翼型 | 有限翼展机翼 | 实验室中的旋翼 | 风洞中的旋翼 | 飞行试验 |
---|---|---|---|---|---|
压力传感器 | √ | √ | √ | √ | √ |
热膜 | √ | √ | × | · | × |
PIV(2 components) | √ | √ | √ | √ | · |
Micro PIV | √ | × | × | × | × |
Tomo PIV and STB | × | × | √ | × | × |
PSP/TSP | √ | × | · | · | × |
BOS | √ | · | · | · | · |
DIT(转捩测量) | √ | √ | √ | · | · |
DIT(失速探测) | √ | × | √ | × | × |
注: √: 应用于动态失速;×: 未应用;·: 应用于其他流动。
在数值分析领域,求解Navier⁃Stokes方程的高保真计算方法在解决动态失速问题方面也取得了显著的进展。随着并行计算设施与技术的不断完善,如今已能够在上千个处理器上对更大规模的网格进行计算,为数值模拟提供了更强大的运算支持。自1997年Spalart
无论是试验方法还是数值分析方法,都在朝着实现更高空间和时间分辨率的方向持续发展,在此过程中催生了众多新方法。此外,在对试验和数值仿真所获数据的处理上,借助包含模态分解方

图2 翼型动态失速状态气动载荷周期间差异聚类分
Fig.2 Cluster analysis of cycle⁃to⁃cycle variations in airloads during airfoil dynamic stal
20世纪80年代,McCroskey
DSV是旋翼翼型动态失速过程中的特征流动结构,众多研究人员致力于揭示其演化机制。Mulleners

图3 DSV形成过
Fig.3 Process of DSV formatio

图4 不同厚度翼型动态失速过程的LSB和DSV行
Fig.4 Behavior of LSB and DSV for airfoils with different thicknesses during dynamic stal
研究人员利用流动显示技术,对翼型在动态失速周期内的流动演化获得了宏观层面的理

图5 翼型动态失速发展过
Fig.5 Developing process of airfoil dynamic stal
旋翼翼型动态失速包含多种类型,McCroske

图6 翼型轻度失速和深度失速气流分离区
Fig.6 Flow separation regions of airfoil in light and deep stall regime
上述研究均在定常来流状态下开展,清晰地揭示了旋翼翼型动态失速类型、发展阶段、各阶段的标志性气动事件以及DSV的演化过程,显著推动了对动态失速机理的认识。同时,旋翼翼型动态失速特性受到多种因素的影响,杨鹤森
当直升机前飞时,前飞速度和旋转速度的叠加使得桨叶剖面的相对来流速度呈现周期性变化。对此,一些学者针对非定常来流工况下的翼型动态失速载荷进行了试验和数值模拟研究。受到试验条件的限制,这类研究工作相对较少。Favier

图7 俄亥俄州立大学跨声速非定常风
Fig.7 Transonic unsteady wind tunnel at the Ohio State Universit

图8 以色列理工学院的非定常风
Fig.8 Unsteady wind tunnel at the Technion‑Israel Institute of Technolog

图9 南京航空航天大学非定常风
Fig.9 Unsteady wind tunnel at the Nanjing University of Aeronautics and Astronautic
目前国内外开展的变来流速度状态翼型动态失速试验主要针对风力机翼型或机翼翼型的工作条件,并且受变速度风洞技术的限制,目前的非定常风洞的脉动速度幅值无法满足直升机的前飞速度需求。国内的变速度风洞的风速变化频率也仅在1 Hz左右。在此背景下,CFD方法展现出独特的优势,不仅适用于高来流速度和大脉动比条件,还能够灵活调整研究参数。Gharali
作为介于旋翼翼型和旋翼之间的过渡案例,有限翼展机翼能够在翼尖涡的影响下产生三维动态失速流动,这对于深入理解旋翼动态失速现象尤为关键。
编号 | 研究人员 | 试验模型 | 试验内容 | 试验工况 |
---|---|---|---|---|
1 |
Pizial | NACA 0015机翼 | 表面测压 |
Ma=0.278 Re=2.0×1 |
2 |
Schreck和Heli | NACA 0015机翼 |
表面测压 流动显示 |
Ma=0.03 Re=6.9×1 |
3 |
Tang和Dowel | NACA 0012机翼 | 表面测压 |
Ma=0.06~0.082 Re=0.52×1 |
4 |
Coton和Galbrait | NACA 0015机翼 | 表面测压 |
Ma=0.1 Re=1.5×1 |
5 |
Berton | NACA 0012尖削机翼 | 速度型测量 |
Ma=0.01~0.3 Re=3×1 |
6 |
Pape | ONEAR机翼 |
表面测压 速度场测量 |
Ma=0.16 Re=0.5×1 |
7 |
Merz | Merz机翼 |
表面测压 速度场测量 |
Ma=0.16 Re=9×1 |

图10 若干有限翼展机翼动态失速试验模型
Fig.10 Several test models for the dynamic stall of finite wings
在翼尖涡的干扰下,动态失速涡的形态发生了显著变化。试验和数值研究发现,机翼流场中DSV在演化过程中变形为Ω涡(也称为Π⁃Ω涡、弓形涡、马蹄涡

图11 翼尖涡干扰下的动态失速涡结构
Fig.11 DSV structure interacted by wing⁃tip vortices

图12 展弦比对动态失速涡结构的影
Fig.12 Effects of aspect ratio on DSV structur

图13 后掠角对动态失速涡结构的影
Fig.13 Effects of swept angle on DSV structur
迄今,关于直升机旋翼动态失速的飞行试验研究较少,目前公开的文献中包含

图14 直升机飞行试验
Fig.14 Helicopter flight tests

图15 UH-60A直升机旋翼桨盘失速区
Fig.15 Rotor stall map of UH-60A helicopte
相较于飞行试验,旋翼风洞试验能够采用更多种类的测量技术。

图16 旋翼动态失速风洞试验研究
Fig.16 Wind tunnel tests on rotor dynamic stall
DLR在德⁃荷风洞群的大型低速风洞中对7AD模型旋翼开展了PIV试
ONERA在S1MA跨声速风洞中对7A和7AD模型旋翼开展了试验测
继UH⁃60A直升机飞行试验后,NASA和美国陆军合作于2010年完成了全尺寸UH⁃60A直升机旋翼的风洞试
佐治亚理工学
针对旋翼动态失速的数值模拟研究主要围绕一系列试验模型进行,涉及的研究对象包括UH⁃60A直升机旋
相比之下,针对旋翼动态失速机理的数值研究相对较少,且由于复杂流动干扰的存在,分析往往不够深入。Letzgus

图17 Bluecopter直升机旋翼动态失速数值研
Fig.17 Numerical study on dynamic stall of Bluecopter roto

图18 低转速时7A旋翼桨盘分离区域、桨/涡干扰位置与流场结
Fig.18 Separation regions on the rotor disk, BVI locations, and flowfield structure of 7A rotor at low rotational speed
为突破因旋翼动态失速问题所导致的飞行性能限制,研究人员从两个主要方向展开了探索:一是研发非常规构型,从根源上规避旋翼动态失速问题;二是对气流进行控制,以此抑制动态失速现象的发生。在非常规构型研发领域,研究人员创新性地提出了前行桨叶概念(Advancing blade concept,ABC)以及升力偏置(Lift offset,LOS)旋翼设计。这些设计理念旨在充分挖掘前行桨叶的升力性能优势,通过巧妙的力学布局为后行桨叶减轻负载,从原理上规避动态失速的出现。在此背景下,

图19 规避旋翼动态失速的非常规构型直升机
Fig.19 Unconventional helicopters designed to avoid rotor dynamic stall
在流动控制领域,近年来众多研究人员对该领域相关研究展开了系统综述,具体内容如
出版年份 | 文献 | 流动控制方法 |
---|---|---|
2018 |
文献[ | 旋翼变体技术(专著) |
2019 |
文献[ | 吹气控制 |
2020 |
文献[ | 主动和被动流动控制(等离子体控制为主) |
2020 |
文献[ | 主动和被动流动控制(专著,包含旋翼变体技术) |
2022 |
文献[ | 协同射流控制 |
2023 |
文献[ | 主动和被动流动控制 |
2023 |
文献[ | 主动和被动流动控制 |

图20 若干典型的动态失速被动流动控制方法
Fig.20 Several typical passive flow control methods for dynamic stall
主动流动控制方法丰富多样,涵盖合成射流、协同射流、等离子体、吹气等技术。从广义上讲,旋翼变体技术(例如变弦长、变弯度、变下垂前缘、后缘小翼、变直径、变扭转等)同样属于主动流动控制的范畴。

图21 若干典型的动态失速主动流动控制方法
Fig.21 Several typical active flow control methods for dynamic stall
在直升机工程应用领域,研究人员通常采用半经验动态失速模型来快速预测旋翼气动载荷以及进行初步的旋翼外形设计。这类模型通过构建线性或非线性方程组,重现动态失速试验中观测到的物理现象,从而有效计算动态气动载荷。半经验动态失速模型通常包含多个通过静态和动态试验数据导出的经验参数,能够在特定条件下较为准确地反映翼型的非定常气动特性。
自20世纪七八十年代以来,基于旋翼翼型动态失速的理论与试验研究,研究人员发展了多种半经验翼型动态失速模型,如Boeing⁃Vertol模
原始的L⁃B模型基于Theodorse

图22 Leishman-Beddoes动态失速模型的发展演
Fig.22 Evolution of Leishman-Beddoes dynamic stall mode
随着风能领域的快速发展,L⁃B模型的应用范围逐渐从直升机行业扩展至风力发电机领域。针对风力机翼型的独特形状和流动特性,研究人员对L⁃B模型进行了多项改进。在上述4类改进模型中,Sheng模
尽管半经验模型在旋翼气动载荷预测和设计应用中展现出显著优势,但其使用仍面临两大挑战:(1)对于每一个特定翼型,模型中的经验参数需要基于广泛马赫数范围内的试验数据进行校准;(2)当面对缺乏试验数据的翼型或运行状态时,这类模型难以确保预测的准确性。因此,半经验模型的应用受到严格的试验数据要求限制,普适性较低。近年来,随着人工智能技术的迅猛发展,越来越多的研究人员尝试利用其来开发动态失速快速预测方法,以减少对试验数据的依赖并提升模型的泛化能力。实际上,早在20世纪末,研究人员就已经开始探索使用递归神经网络模拟动态失速的非定常效
本文从试验测量与数值分析方法、流动机理、流动控制以及半经验模型等多个维度,系统梳理了旋翼动态失速的相关研究进展。通过深入剖析当前研究工作,对未来旋翼动态失速的研究方向提出了若干思考与建议,旨在为相关领域的研究人员提供全面的研究概览。
(1)在动态失速领域,试验测量与数值分析技术均取得了显著进展。然而,目前针对旋翼可实施的测量方法以及相关研究数量依然有限。与此同时,数值分析在旋翼气弹/耦合、动态失速的模拟分析方面,仍存在较大的提升空间。未来,应充分融合这两类方法的互补优势,为开展覆盖全工况的旋翼动态失速研究,提供可靠的技术支撑。
(2)基于旋翼翼型的试验与数值模拟,研究已揭示了动态失速类型、多阶段演化规律及关键参数影响机制,但非定常来流条件下的动态失速机理仍面临双重挑战:试验层面,现有设备难以复现旋翼真实工况的非定常流场特性;理论层面,自由来流扰动与翼型主动运动的模拟方法等效性存疑。未来需优先建立面向旋翼的非定常来流测量和模拟方法,在此基础上,进一步开展非定常来流状态的动态失速机理研究。
(3)在有限翼展机翼和旋翼动态失速研究中,研究人员已对翼尖涡干扰下动态失速涡的发展,以及复杂气动环境中旋翼动态失速模式形成宏观认知。但相比旋翼翼型研究,机翼和旋翼动态失速特性的探究较少且分析不够深入。机翼与旋翼动态失速流场涉及多种流动现象耦合,建立有效分析方法、深入挖掘数据特征,是该领域未来研究的关键挑战与重点方向,其中数据驱动和机器学习技术将发挥重要作用。
(4)主动流动控制技术不仅具有控制动态失速的能力,在全面提升直升机旋翼性能方面更展现出巨大的应用潜力。然而,目前主动流动控制技术在实际工程应用中尚未取得实质性突破,迫切需要大力开展控制机制研究以及控制系统集成试验。此外,为了实现对动态失速的及时探测,利用流场传感技术深入开展实时预测研究也极为必要。
(5)随着工程应用场景的不断扩展,半经验动态失速模型已经从直升机旋翼领域成功拓展至风力机、无人机等多个应用领域,并逐步融合了数据驱动方法与机器学习技术,旨在减少对试验数据的依赖,向更高精度和智能化的建模方式转型。未来,该模型的核心目标是平衡计算效率与预测精度,同时向三维化、多物理场耦合以及数据与物理规律深度融合的方向发展。
参考文献
JOHNSON W. Helicopter theory[M]. New Jersey: Princeton University Press, 2012. [百度学术]
BOUSMAN W G. UH-60 airloads program tutorial[C]//Proceedings of the AHS 65th Annual Forum and Technology Display. Grapevine, TX:AHS, 2004. [百度学术]
GARDNER A D, WOLF C C, RAFFEL M. Review of measurement techniques for unsteady helicopter rotor flows[J]. Progress in Aerospace Sciences, 2019, 111: 100566. [百度学术]
GARDNER A D, JONES A R, MULLENERS K, et al. Review of rotating wing dynamic stall: Experiments and flow control[J]. Progress in Aerospace Sciences, 2023, 137: 100887. [百度学术]
PIERCE G A, KUNZ D L, MALONE J B. The effect of varying freestream velocity on airfoil dynamic stall characteristics[J]. Journal of the American Helicopter Society, 1978, 23(2): 27-33. [百度学术]
GOMPERTZ K, JENSEN C, KUMAR P, et al. Modification of transonic blowdown wind tunnel to produce oscillating freestream Mach number[J]. AIAA Journal, 2011, 49(11): 2555-2563. [百度学术]
GREENBLATT D. Unsteady low-speed wind tunnels[J]. AIAA Journal, 2016, 54(6): 1817-1830. [百度学术]
史志伟. 非定常自由来流对模型动态气动特性影响的实验研究[D].南京:南京航空航天大学, 2006. [百度学术]
SHI Zhiwei.Experimental research of oscillating free-stream effects on dynamic characteristics of wind tunnel models[D].Nanjing:Nanjing University of Aeronautics & Astronautics,2006. [百度学术]
FAVIER D, REBONT J, MARESCA C. Large-amplitude fluctuations of velocity and incidence of an oscillating airfoil[J]. AIAA Journal, 1979, 17(11): 1265-1267. [百度学术]
FAVIER D, MARESCA C, REBONT J. Dynamic stall due to fluctuations of velocity and incidence[J]. AIAA Journal, 1982, 20(7): 865-871. [百度学术]
SPALART P R, JOU W-H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Proceedings of the Advances in DNS/LES.[S.l.]:[s.n.],1997. [百度学术]
KHALIFA N M, REZAEI A, TAHA H E. On computational simulations of dynamic stall and its three-dimensional nature[J]. Physics of Fluids, 2023, 35(10): 105143. [百度学术]
KHALIFA N M, REZAEI A S, TAHA H E. Comparing the performance of different turbulence models in predicting dynamic stall[C]//Proceedings of the AIAA Scitech 2021 Forum.[S.l.]:AIAA, 2021. [百度学术]
MOHAMED K, NADARAJAH S, PARASCHIVOIU M. Detached-eddy simulation of a wing tip vortex at dynamic stall conditions[J]. Journal of Aircraft, 2009, 46(4): 1302-1313. [百度学术]
LETZGUS J, KEßLER M, KRÄMER E. Simulation of dynamic stall on an elastic rotor in high-speed turn flight[J]. Journal of the American Helicopter Society,2020.DOI:10.4050/JAHS.65.022002. [百度学术]
VISBAL M R. Analysis of the onset of dynamic stall using high-fidelity large-eddy simulations[C]//Proceedings of the 52nd Aerospace Sciences Meeting. National Harbor, Maryland: AIAA, 2014. [百度学术]
VISBAL M R, GARMANN D J. Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations[J]. AIAA Journal, 2018, 56(1): 46-63. [百度学术]
BENTON S I, VISBAL M R. The onset of dynamic stall at a high, transitional Reynolds number[J]. Journal of Fluid Mechanics, 2019, 861: 860-885. [百度学术]
BENTON S I, VISBAL M R. Effects of compressibility on dynamic-stall onset using large-eddy simulation[J]. AIAA Journal, 2020, 58(3): 1194-1205. [百度学术]
POTSDAM M, YEO H, JOHNSON W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2006, 43(3): 732-742. [百度学术]
ROMANDER E, NORMAN T R, CHANG I C. Correlating CFD simulation with wind tunnel test for the full-scale UH-60A airloads rotor[C]//Proceedings of the AHS 67th Annual Forum and Technology Display. Virginia Beach, VA:AHS, 2011. [百度学术]
YEO H, ROMANDER E A. Loads correlation of a full-scale UH-60A airloads rotor in a wind tunnel[J]. Journal of the American Helicopter Society, 2013, 58(2): 1-18. [百度学术]
RICHEZ F. Analysis of dynamic stall mechanisms in helicopter rotor environment[J]. Journal of the American Helicopter Society, 2018, 63(2): 1-11. [百度学术]
CASTELLS C, RICHEZ F, COSTES M. A numerical analysis of the dynamic stall mechanisms on a helicopter rotor from light to deep stall[J]. Journal of the American Helicopter Society, 2020, 65(3): 1-17. [百度学术]
LETZGUS J, GARDNER A D, SCHWERMER T, et al. Numerical investigations of dynamic stall on a rotor with cyclic pitch control[J]. Journal of the American Helicopter Society, 2019, 64(1): 1-14. [百度学术]
SMITH M J. An assessment of the state-of-the-art from the 2019 ARO dynamic stall workshop[C]//Proceedings of the AIAA Aviation 2020 Forum.[S.l.]:AIAA, 2020. [百度学术]
MARIAPPAN S, GARDNER A D, RICHTER K, et al. Analysis of dynamic stall using dynamic mode decomposition technique[J]. AIAA Journal, 2014, 52(11): 2427-2439. [百度学术]
ANSELL P J, MULLENERS K. Multiscale vortex characteristics of dynamic stall from empirical mode decomposition[J]. AIAA Journal, 2020, 58(2): 600-617. [百度学术]
COLEMAN D G, THOMAS F O, GORDEYEV S, et al. Parametric modal decomposition of dynamic stall[J]. AIAA Journal, 2019, 57(1): 176-190. [百度学术]
RAMASAMY M, SANAYEI A, WILSON J S, et al. Reducing uncertainty in dynamic stall measurements through data-driven clustering of cycle-to-cycle variations[J]. Journal of the American Helicopter Society, 2021, 66(1): 1-17. [百度学术]
KOU J, ZHANG W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 125: 100725. [百度学术]
TAIRA K, NAIR A G. Network-based analysis of fluid flows: Progress and outlook[J]. Progress in Aerospace Sciences, 2022, 131: 100823. [百度学术]
LENNIE M, STEENBUCK J, NOACK B R, et al. Cartographing dynamic stall with machine learning[J]. Wind Energy Science, 2020, 5(2): 819-838. [百度学术]
MCCROSKEY W J, MCALISTER K W, CARR L W, et al. An experimental study of dynamic stall on advanced airfoil sections. Volume 1:Summary of the experiment:NASA-TM-84245-VOL-1[R]. [S.l.]:NASA,1982. [百度学术]
MCALISTER K, PUCCI S, MCCROSKEY W J, et al. An experimental study of dynamic stall on advanced airfoil sections. Volume 2: Pressure and force data: NASA-TM-84245-VOL-2[R].[S.l.]: NASA, 1982. [百度学术]
CARR L W, MCCROSKEY W J, MCALISTER K W, et al. An experimental study of dynamic stall on advanced airfoil sections: Hot-wire and hot film measurements—Volume 3: NASA-TM-84245-Vol-3[R].[S.l.]: NASA, 1982. [百度学术]
MCCROSKEY W J, CARR L W, MCALISTER K W. Dynamic stall experiments on oscillating airfoils[J]. AIAA Journal, 1976, 14(1): 57-63. [百度学术]
CARR L W, MCALISTER K W, MCCROSKEY W J. Analysis of the development of dynamic stall based on oscillating airfoil experiments: NASA-TN-D-8382[R].[S.l.]: NASA,1977. [百度学术]
MCALISTER K W, CARR L W. Water-tunnel experiments on an oscillating airfoil at RE equals 21 000:NASA-TM-78446[R].[S.l.]: NASA,1978. [百度学术]
MCCROSKEY W J, MCALISTER K W, CARR L W, et al. Dynamic stall on advanced airfoil sections[J]. Journal of the American Helicopter Society, 1981, 26(3): 40-50. [百度学术]
MCCROSKEY W, PUCCI S. Viscous-inviscid interaction on oscillating airfoils in subsonic flow[C]//Proceedings of the 19th Aerospace Sciences Meeting. St. Louis, MO, USA:AIAA, 1981. [百度学术]
MCCROSKEY W J. The phenomenon of dynamic stall:NASA TM-81264[R].[S.l.]: NASA,1981. [百度学术]
MULLENERS K, RAFFEL M. Dynamic stall development[J]. Experiments in Fluids, 2013. DOI:10.1007/s00348-013-1469-7. [百度学术]
BENTON S I, VISBAL M R. Effects of leading-edge geometry on the onset of dynamic stall[J]. AIAA Journal, 2018, 56(10): 4195-4198. [百度学术]
SHARMA A, VISBAL M. Numerical investigation of the effect of airfoil thickness on onset of dynamic stall[J]. Journal of Fluid Mechanics, 2019, 870: 870-900. [百度学术]
CHANDRASEKHARA M S, WILDER M C, CARR L W. Competing mechanisms of compressible dynamic stall[J]. AIAA Journal, 1998, 36: 387-393. [百度学术]
LORBER P F, CARTA F O. Airfoil dynamic stall at constant pitch rate and high Reynolds number[J]. Journal of Aircraft, 1988, 25(6): 548-556. [百度学术]
ZAKARIA M Y, TAHA H E, HAJJ M R. Measurement and modeling of lift enhancement on plunging airfoils: A frequency response approach[J]. Journal of Fluids and Structures, 2017, 69: 187-208. [百度学术]
WANG Q, ZHAO Q. Experiments on unsteady vortex flowfield of typical rotor airfoils under dynamic stall conditions[J]. Chinese Journal of Aeronautics, 2016, 29(2): 358-374. [百度学术]
WEI B, GAO Y, LI D. Physics of dynamic stall vortex during pitching oscillation of dynamic airfoil[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(6): 1263-1277. [百度学术]
CHANDRASEKHARA M S, CARR L W. Flow visualization studies of the Mach number effects on dynamic stall of an oscillating airfoil[J]. Journal of Aircraft, 1990, 27(6): 516-522. [百度学术]
CHANDRASEKHARA M, AHMED S. Laser velocimetry measurements of oscillating airfoil dynamic stall flow field[C]//Proceedings of the 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference. Honolulu, HI, USA: AIAA, 1991. [百度学术]
SHIH C, LOURENCO L, VAN DOMMELEN L, et al. Unsteady flow past an airfoil pitching at a constant rate[J]. AIAA Journal, 1992, 30(5): 1153-1161. [百度学术]
DOLIGALSKI T L, SMITH C R, WALKER J D A. Vortex interactions with walls[J]. Annual Review of Fluid Mechanics, 1994, 26: 573-616. [百度学术]
MULLENERS K, RAFFEL M. The onset of dynamic stall revisited[J]. Experiments in Fluids, 2012, 52(3): 779-793. [百度学术]
GUPTA R, ANSELL P J. Flow evolution and unsteady spectra of dynamic stall at transitional Reynolds numbers[J]. AIAA Journal, 2020, 58(8): 3272-3285. [百度学术]
GARDNER A D, RICHTER K, MAI H, et al. Experimental investigation of dynamic stall performance for the EDI-M109 and EDI-M112 airfoils[J]. Journal of the American Helicopter Society, 2013, 58(1): 1-13. [百度学术]
杨鹤森, 赵光银, 梁华, 等. 翼型动态失速影响因素及流动控制研究进展[J]. 航空学报, 2020, 41(8):119-144. [百度学术]
YANG Hesen, ZHAO Guangyin, LIANG Hua, et al. Research progress on influence factors of airfoil dynamic stall and flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):119-144. [百度学术]
GOMPERTZ K A, JENSEN C D, GREGORY J W, et al. Compressible dynamic stall mechanisms due to airfoil pitching and freestream Mach oscillations[C]//Proceedings of the American Helicopter Society 68th Annual Forum. Fort Worth, Texas:AHS, 2012. [百度学术]
UNIVERSITY T O S, GREGORY J, BONS J, et al. Compressible dynamic stall of an SSC-A09 airfoil subjected to coupled pitch and freestream Mach oscillations[C]//Proceedings of the Vertical Flight Society 70th Annual Forum. Montréal, Québec: The Vertical Flight Society, 2014. [百度学术]
UNIVERSITY T O S, HIRD K, FRANKHOUSER M, et al. Study of an SSC-A09 airfoil in compressible dynamic stall with freestream Mach oscillations[C]//Proceedings of the Vertical Flight Society 71st Annual Forum. Virginia Beach, VA, USA: The Vertical Flight Society, 2015. [百度学术]
MEDINA A, OL M V, GREENBLATT D, et al. High-amplitude surge of a pitching airfoil: Complementary wind- and water-tunnel measurements[J]. AIAA Journal, 2018, 56(4): 1703-1709. [百度学术]
GHARALI K, JOHNSON D A. Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity[J]. Journal of Fluids and Structures, 2013, 42: 228-244. [百度学术]
AL-JABURI K, FESZTY D, NITZSCHE F. A methodology for simulating 2D shock-induced dynamic stall at flight test-based fluctuating freestream[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2223-2238. [百度学术]
WANG Q, ZHAO Q. Unsteady aerodynamic characteristics investigation of rotor airfoil under variational freestream velocity[J]. Aerospace Science and Technology, 2016, 58: 82-91. [百度学术]
PIZIALI R A. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall:NASA-TM-4632[R]. [S.l.]: NASA, 1994. [百度学术]
SCHRECK S J, HELLIN H E. Unsteady vortex dynamics and surface pressure topologies on a finite pitching wing[J]. Journal of Aircraft, 1994, 31(4): 899-907. [百度学术]
TANG D M, DOWELL E H. Experimental investigation of three-dimensional dynamic stall model oscillating in pitch[J]. Journal of Aircraft, 1995, 32(5): 1062-1071. [百度学术]
COTON F N, MCD GALBRAITH R A. An experimental study of dynamic stall on a finite wing[J]. The Aeronautical Journal, 1999, 103(1023): 229-236. [百度学术]
BERTON E, ALLAIN C, FAVIER D, et al. Experimental methods for subsonic flow measurements[M]. New York: Springer-Verlag Berlin Heidelberg, 2003: 97-104. [百度学术]
BERTON E, ALLAIN C, FAVIER D, et al. Database for steady and unsteady 2-D and 3-D flow[M]. New York: Springer-Verlag Berlin Heidelberg, 2003: 155-164. [百度学术]
PAPE A L, PAILHAS G, DAVID F, et al. Extensive wind tunnel tests measurements of dynamic stall phenomenon for the OA209 airfoil including 3D effects[C]//Proceedings of the 33rd European Rotorcraft Forum. Kazan, Russia:[s.n.], 2007. [百度学术]
MERZ C B, WOLF C C, RICHTER K, et al. Experimental investigation of dynamic stall on a pitching rotor blade tip[M]//Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Cham: Springer International, 2016: 339-348. [百度学术]
KAUFMANN K, MERZ C B, GARDNER A D. Dynamic stall simulations on a pitching finite wing[J]. Journal of Aircraft, 2017, 54(4): 1303-1316. [百度学术]
LÜTKE B, NUHN J, GOVERS Y, et al. Design of a rotor blade tip for the investigation of dynamic stall in the transonic wind-tunnel Göttingen[J]. The Aeronautical Journal, 2016, 120(1232): 1509-1533. [百度学术]
ANGULO A I, ANSELL P J. Influence of aspect ratio on dynamic stall of a finite wing[C]//Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida, USA:AIAA, 2018. [百度学术]
SPENTZOS A, BARAKOS G, BADCOCK K, et al. CFD investigation of 2D and 3D dynamic stall[C]//Proceedings of the AHS 4th Decennial Specialist’s Conference on Aeromechanics. San Fransisco, California, USA: AHS, 2004. [百度学术]
KAUFMANN K, COSTES M, RICHEZ F, et al. Numerical investigation of three-dimensional static and dynamic stall on a finite wing[J]. Journal of the American Helicopter Society, 2015, 60(3): 1-12. [百度学术]
VISBAL M R, GARMANN D J. Effect of sweep on dynamic stall of a pitching finite-aspect-ratio wing[J]. AIAA Journal, 2019, 57(8): 3274-3289. [百度学术]
MERZ C B, WOLF C C, RICHTER K, et al. Spanwise differences in static and dynamic stall on a pitching rotor blade tip model[J]. Journal of the American Helicopter Society, 2017, 62(1): 1-11. [百度学术]
HAMMER P R, GARMANN D J, VISBAL M R. Effect of aspect ratio on finite-wing dynamic stall[J]. AIAA Journal, 2022, 60(12): 6581-6593. [百度学术]
COSTES M, RICHEZ F, LE PAPE A, et al. Numerical investigation of three-dimensional effects during dynamic stall[J]. Aerospace Science and Technology, 2015, 47: 216-237. [百度学术]
LETZGUS J, KEßLER M, KRÄMER E. Simulation of dynamic stall on an elastic rotor in high-speed turn flight[J]. Journal of the American Helicopter Society, 2020, 65(2): 1-12. [百度学术]
MULLENERS K, KINDLER K, RAFFEL M. Dynamic stall on a fully equipped helicopter model[J]. Aerospace Science and Technology, 2012, 19(1): 72-76. [百度学术]
SCHWERMER T, GARDNER A D, RAFFEL M. A novel experiment to understand the dynamic stall phenomenon in rotor axial flight[J]. Journal of the American Helicopter Society, 2019, 64(1): 1-11. [百度学术]
BABIJ G, MÜLLER M M. Dynamic stall computations of a double-swept rotor blade with rigid and elastic modelling[C]//Proceedings of the New Results in Numerical and Experimental Fluid Mechanics XIV. Cham: Springer Nature Switzerland, 2024. [百度学术]
BEAUMIER P, COSTES M, GAVERIAUX R. Comparison between FP3D full potential calculations and S1 modane wind tunnel test results on advanced fully instrumented rotor[C]//Proceedings of the 19th European Rotorcraft Forum. Cernobbio, Italy:[s.n.], 1993. [百度学术]
CROZIER P. Recent improvements in rotor testing capabilities in the ONERA S1MA wind tunnel[C]//Proceedings of the 20th European Rotorcraft Forum.[S.l.]:[s.n.],1994. [百度学术]
CENTER G A, SURREY S, LAB O F A, et al. Investigation of the structural blade dynamics and aeroelastic behavior of the 7A rotor[C]//Proceedings of the Vertical Flight Society 72nd Annual Forum. West Palm Beach, Florida, USA:The Vertical Flight Society, 2016. [百度学术]
NORMAN T R, SHINODA P, PETERSON R L, et al. Full-scale wind tunnel test of the UH-60A airloads rotor[J]. Annual Forum Proceedings—AHS International, 2011, 4: 2962-2987. [百度学术]
LEE-RAUSCH E M, BIEDRON R T. FUN3D airloads predictions for the full-scale UH-60A airloads rotor in a wind tunnel[J]. Journal of the American Helicopter Society, 2014, 59(3): 1-19. [百度学术]
POTSDAM M, DATTA A, JAYARAMAN B. Computational investigation and fundamental understanding of a slowed UH-60A rotor at high advance ratios[J]. Journal of the American Helicopter Society, 2016, 61(2): 1-17. [百度学术]
RICHEZ F, GRUBB A. Validation and analysis of aeroelastic simulations of the UH-60A rotor from pre- to post-stall flight conditions[C]//Proceedings of the Vertical Flight Society 76th Annual Forum.[S.l.]: The Vertical Flight Society, 2020. [百度学术]
RAGHAV V, KOMERATH N. An exploration of radial flow on a rotating blade in retreating blade stall[J]. Journal of the American Helicopter Society, 2013, 58(2): 1-10. [百度学术]
RAGHAV V, KOMERATH N. Velocity measurements on a retreating blade in dynamic stall[J]. Experiments in Fluids, 2014, 55(2): 1669. [百度学术]
RAGHAV V. Radial flow effects on a retreating rotor blade[D]. Atlanta: Georgia Institute of Technology, 2014. [百度学术]
DATTA A, CHOPRA I. Prediction of UH-60A dynamic stall loads in high altitude level flight using CFD/CSD coupling[C]//Proceedings of the 61st Annual Forum of the American Helicopter Society. Grapevine, Texas: AHS, 2005. [百度学术]
GRUBB A, SMITH M. High fidelity CFD analyses of dynamic stall on a four-bladed fully articulated rotor system[C]//Proceedings of the Vertical Flight Society 80th Annual Forum. Montreal, Quebec, Canada: The Vertical Flight Society, 2024. [百度学术]
RUAN Y, HAJEK M. Numerical investigation of a dynamic stall on a single rotating blade[J]. Aerospace, 2021, 8(4): 90. [百度学术]
赵国庆, 刘绍辉, 李军府, 等. 旋翼非定常动态失速的三维效应分析[J]. 航空动力学报, 2018, 33(6): 1484-1491. [百度学术]
ZHAO Guoqing, LIU Shaohui, LI Junfu, et al. Analysis on three-dimensional effects of rotor unsteady dynamic stall[J]. Journal of Aerospace Power, 2018, 33(6): 1484-1491. [百度学术]
WANG Q, ZHAO Q. Numerical study on dynamic-stall characteristics of finite wing and rotor[J]. Applied Sciences, 2019, 9(3): 600. [百度学术]
LORBER P F, LAW G K, O’NEILL J J, et al. Overview of S-97 Raider TM scale model tests[C]//Proceedings of the AHS 72th Annual Forum. West Palm Beach, FL, USA:AHS, 2016. [百度学术]
BAUKNECHT A, WANG X, FAUST J A, et al. Wind tunnel test of a rotorcraft with lift compounding[J]. Journal of the American Helicopter Society, 2021, 66(1): 1-16. [百度学术]
CONCILIO A, DIMINO I, PECORA R, et al. Morphing wing technologies, large commercial aircraft and civil helicopters[M].[S.l.]: Elsevier, 2018. [百度学术]
ADERA A, RAMAKRISHNAN S. Review on dynamic stall control in airfoils[C]//Proceedings of the Advances of Science and Technology. Cham: Springer International Publishing, 2019. [百度学术]
招启军, 赵国庆, 王清, 等. 先进旋翼设计空气动力学[M]. 北京: 科学出版社, 2020. [百度学术]
ZHAO Qijun, ZHAO Guoqing, WANG Qing, et al. Advanced rotor design aerodynamics[M]. Beijing: Science Press, 2020. [百度学术]
许和勇, 马成宇. 协同射流流动控制方法研究进展综述[J]. 航空工程进展, 2022, 13(6): 1-16. [百度学术]
XU Heyong, MA Chengyu. Review of the co-flow jet flow control method[J]. Advances in Aeronautical Science and Engineering, 2022, 13(6): 1-16. [百度学术]
李国强, 赵鑫海, 易仕和, 等. 旋翼动态失速与反流流动控制研究进展[J]. 实验流体力学, 2023, 37(4): 29-47. [百度学术]
LI Guoqiang, ZHAO Xinhai, YI Shihe, et al. Research progress on rotor reverse flow and dynamic stall flow control methods[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 29-47. [百度学术]
WANG Q, ZHAO Q, WU Q. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(2): 346-356. [百度学术]
OPITZ S, GARDNER A D, KAUFMANN K. Aerodynamic and structural investigation of an active back-flow flap for dynamic stall control[J]. CEAS Aeronautical Journal, 2014, 5(3): 279-291. [百度学术]
DE TAVERNIER D, FERREIRA C, VIRÉ A, et al. Controlling dynamic stall using vortex generators on a wind turbine airfoil[J]. Renewable Energy, 2021, 172: 1194-1211. [百度学术]
HRYNUK J T, BOHL D G. The effects of leading-edge tubercles on dynamic stall[J]. Journal of Fluid Mechanics, 2020, 893: A5. [百度学术]
赵国庆. 直升机旋翼非定常动态失速的CFD模拟及其主动流动控制研究[D].南京:南京航空航天大学, 2015. [百度学术]
ZHAO Guoqing. CFD simulation of unsteady dynamic stall of helicopter rotor and its active flow control research[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2015. [百度学术]
ZHA G, YANG Y, REN Y, et al. Super-lift and thrusting airfoil of coflow jet actuated by micro-compressors[C]//Proceedings of the 2018 Flow Control Conference. Atlanta, Georgia: AIAA, 2018. [百度学术]
李国强, 常智强, 张鑫, 等. 翼型动态失速等离子体流动控制试验[J]. 航空学报, 2018, 39(8): 122111. [百度学术]
LI Guoqiang, CHANG Zhiqiang, ZHANG Xin, et al. Experiment on flow control of airfoil dynamic stall using plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 122111. [百度学术]
GARDNER A D, RICHTER K, MAI H, et al. Experimental investigation of air jets for the control of compressible dynamic stall[J]. Journal of the American Helicopter Society, 2013.DOI:info:doi/10.4050/JAHS.58.042001. [百度学术]
KHOSHLAHJEH M, GANDHI F. Extendable chord rotors for helicopter envelope expansion and performance improvement[J]. Journal of the American Helicopter Society, 2014, 59(1): 1-10. [百度学术]
HARRIS F D, TARZANIN F J, FISHER R K. Rotor high speed performance, theory vs. test[J]. Journal of the American Helicopter Society, 1970, 15(3): 35-44. [百度学术]
LEISHMAN J G, BEDDOES T S. A generalized model for airfoil unsteady aerodynamic behavior and dynamic stall using the indicial method[C]//Proceedings of the American Helicopter Society 42nd Annual Forum. Washington DC, USA:AHS, 1986. [百度学术]
TRAN C T, PETOT D. Semi-empirical model for the dynamic stall of airfoils in view of the of the application to the calculation of the responses of a helicopter blade in forward flight[J]. Vertica, 1981, 5(1): 35-53. [百度学术]
THEODORSEN T. General theory of aerodynamic instability and the mechanism of flutter: NACA-TR-496[R].[S.l.]:NACA, 1979. [百度学术]
VON KARMAN T, SEARS W R. Airfoil theory for non-uniform motion[J]. Journal of the Aeronautical Sciences, 1938, 5(10): 379-390. [百度学术]
DURANTE D, DUBBIOSO G, TESTA C. Simplified hydrodynamic models for the analysis of marine propellers in a wake-field[J]. Journal of Hydrodynamics, Ser B, 2013, 25(6): 954-965. [百度学术]
GENNARETTI M, TESTA C, BERNARDINI G. An unsteady aerodynamic formulation for efficient rotor tonal noise prediction[J]. Journal of Sound and Vibration, 2013, 332(25): 6743-6754. [百度学术]
BEDDOES T. A third generation model for unsteady aerodynamics and dynamic stall[M]. Yeovil, England: Westland Helicopter, Ltd, 1993. [百度学术]
MELANI P F, ARYAN N, GRECO L, et al. The Beddoes-Leishman dynamic stall model: Critical aspects in implementation and calibration[J]. Renewable and Sustainable Energy Reviews, 2024, 202: 114677. [百度学术]
DAMIANI R, HAYMAN G. The unsteady aerodynamics module for FAST 8:NREL/TP-5000-66347[R].[S.l.]: NREL, 2019. [百度学术]
BANGGA G, LUTZ T, ARNOLD M. An improved second-order dynamic stall model for wind turbine airfoils[J]. Wind Energy Science, 2020, 5(3): 1037-1058. [百度学术]
BANGGA G, PARKINSON S, COLLIER W. Development and validation of the IAG dynamic stall model in state-space representation for wind turbine airfoils[J]. Energies, 2023, 16(10): 3994. [百度学术]
HANSEN M H, GAUNAA M, MADSEN H A. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations:RISØ-R-1354[R].Roskilde, Denmark: RISØ National Laboratory, 2004. [百度学术]
SHENG W, MCD GALBRAITH R A, COTON F N. A modified dynamic stall model for low Mach numbers[J]. Journal of Solar Energy Engineering, 2008, 130(3): 031013. [百度学术]
WANG Q, ZHAO Q. Modification of Leishman-Beddoes model incorporating with a new trailing-edge vortex model[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(9): 1606-1615. [百度学术]
SHENG W, MCD GALBRAITH R A, COTON F N. A new stall-onset criterion for low speed dynamic-stall[J]. Journal of Solar Energy Engineering, 2006, 128(4): 461-471. [百度学术]
SHENG W, GALBRAITH R, COTON F. A modified dynamic stall model for low Mach numbers[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada:IAA, 2007. [百度学术]
SHENG W, MCD GALBRAITH R A, COTON F N. Prediction of dynamic stall onset for oscillatory low-speed airfoils[J]. Journal of Fluids Engineering, 2008, 130(10): 101204. [百度学术]
SHENG W, MCD GALBRAITH R A, COTON F N. Return from aerofoil stall during ramp-down pitching motions[J]. Journal of Aircraft, 2007, 44(6): 1856-1864. [百度学术]
NIVEN A J, MCD GALBRAITH R A. Modelling dynamic stall vortex inception at low Mach numbers[J]. The Aeronautical Journal, 1997, 101(1002): 67-76. [百度学术]
BOUTET J, DIMITRIADIS G, AMANDOLESE X. A modified Leishman-Beddoes model for airfoil sections undergoing dynamic stall at low Reynolds numbers[J]. Journal of Fluids and Structures, 2020, 93: 102852. [百度学术]
DOS SANTOS L G P, MARQUES F D. Improvements on the Beddoes-Leishman dynamic stall model for low speed applications[J]. Journal of Fluids and Structures, 2021, 106: 103375. [百度学术]
HUANG B, WANG P, WANG L, et al. A combined method of CFD simulation and modified Beddoes-Leishman model to predict the dynamic stall characterizations of S809 airfoil[J]. Renewable Energy, 2021, 179: 1636-1649. [百度学术]
LI Z, GAO Z, CHEN Y, et al. A novel dynamic stall model based on Theodorsen theory and its application[J]. Renewable Energy, 2022, 193: 344-356. [百度学术]
GE M, SUN H, MENG H, et al. An improved B-L model for dynamic stall prediction of rough-surface airfoils[J]. Renewable Energy, 2024, 226: 120371. [百度学术]
吕超, 王同光. 三维动态失速模型研究[J]. 应用数学和力学, 2011, 32(4): 375-382. [百度学术]
LYU Chao, WANG Tongguang. Modelling of three-dimensional dynamic stall[J]. Applied Mathematics and Mechanics, 2011, 32(4): 375-382. [百度学术]
吕超, 王同光, 许波峰. 三维动态失速模型在风力机气动特性计算中的应用[J]. 南京航空航天大学学报, 2011, 43(5): 707-712. [百度学术]
LYU Chao, WANG Tongguang, XU Bofeng. Application of 3-D dynamic stall model in wind turbine aerodynamic performance prediction[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5): 707-712. [百度学术]
FALLER W E, SCHRECK S J. Neural networks: Applications and opportunities in aeronautics[J]. Progress in Aerospace Sciences, 1996, 32(5): 433-456. [百度学术]
SHI Z, GAO C, DOU Z, et al. Dynamic stall modeling of wind turbine blade sections based on a data-knowledge fusion method[J]. Energy, 2024, 305: 132234. [百度学术]
MOHAMED A, WOOD D. Deep learning predictions of unsteady aerodynamic loads on an airfoil model pitched over the entire operating range[J]. Physics of Fluids, 2023, 35(5): 053113. [百度学术]
WANG X, KOU J, ZHANG W, et al. Incorporating physical models for dynamic stall prediction based on machine learning[J]. AIAA Journal, 2022, 60(7): 4428-4439. [百度学术]
ZHENG B, YAO W, XU M. Enhancing the Goman-Khrabrov dynamic stall model through flow delay analysis[J]. Physics of Fluids, 2025, 37(1): 015172. [百度学术]
GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115. [百度学术]