摘要
为改善压痕法测试断裂韧性过程中测量标准不同和精度不足的问题,基于临界压痕能量(Critical indentation energy, CIE)法,提出了基于Berkovich压痕应变能量密度(Strain energy density, SED)评估钢材断裂韧性的方法。同时考虑弹性和塑性能量并修正临界总压深,评价了9种钢材的韧性。结果表明,发现仅考虑塑性能量所测量韧性的相对误差在5%~20%,而本文同时考虑弹性和塑性能量所测量韧性的相对误差在5%以内。同时,确定临界总压深的拟合范围需要避开材料近表面弹性模量上升的区域,改善了基于CIE法使用Berkovich压头评估钢材断裂韧性的精确度。
随着航空业的发展,对于各部件的性能需求越来越高。这些部件的工作环境较为恶劣,经常面临高温、高压、高速等极端条件,尤其是涡轮叶片、传动轴、齿轮等重要的零部件在工作时都需要承受复杂且较高的交变应
目前已有许多学者基于压痕法提出了一些方法用来评估材料的断裂韧

图1 316不锈钢弹性模量随压痕深度的变化和不同拟合范围的lnE和lnh的线性关系
Fig.1 Variation of elastic modulus E of 316 stainless steel as a function of indentation depth and fitting results of lnE and lnh with different ranges
因此,本文将基于CIE方法,应用Berkovich压痕试验,通过考虑压痕试验加载过程中的弹性能量和塑性能量来评估9种钢材的断裂韧性。同时分析了压深拟合范围对确定临界总压深的影响,给出建议压深拟合范围。为了证明测量结果的准确度,将本文与文献中传统方法的测量结果进行比较,并阐明内在原因。
本文中选用9种常用钢材,其主要化学成分如
钢材 | C | Si | Mn | Mo | P | Cr | Ni | S | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|
A36 | 0.20 | 0.35 | 0.30 | ─ | 0.045 | ─ | ─ | 0.045 | ─ | 余量 |
1020 | 0.20 | 0.35 | 0.30 | ─ | 0.04 | 0.25 | 0.25 | 0.05 | 0.25 | 余量 |
1045 | 0.45 | 0.17 | 0.60 | ─ | 0.05 | 0.25 | 0.25 | 0.05 | 0.25 | 余量 |
1065 | 0.65 | 0.37 | 0.50 | ─ | 0.035 | 0.25 | 0.30 | 0.035 | 0.25 | 余量 |
1095 | 0.95 | ─ | 0.40 | ─ | 0.04 | ─ | ─ | 0.05 | ─ | 余量 |
304L | 0.08 | 1.00 | 2.00 | ─ | 0.045 | 19.00 | 8.00 | 0.03 | ─ | 余量 |
316 | 0.08 | 1.00 | 2.00 | 2.00 | 0.045 | 16.00 | 14.00 | 0.03 | ─ | 余量 |
440C | 0.60 | 1.00 | 1.00 | 0.75 | 0.04 | 16.00 | ─ | 0.03 | ─ | 余量 |
G8Cr15 | 0.85 | 0.35 | 0.45 | 0.08 | 0.025 | 1.65 | 0.30 | 0.025 | 0.25 | 余量 |
通过不同的加载⁃卸载曲线,根据Oliver⁃Pharr理论计算出各材料在不同深度下的弹性模
(1) |
(2) |
式中Er、Ei、ν、νi、Ac、S分别为被测材料减缩弹性模量、压头弹性模量、被测材料泊松比、压头泊松比、压痕接触深度下的投影面积和载荷⁃深度曲线中卸载斜率即卸载刚度。
根据连续损伤力学,Kachano
(3) |
随着压深的增加,弹性模量E不断降低,当材料在临界压深发生损伤时,弹性模量E降至临界弹性模量Ec,损伤变量D达到临界值Dc。由于压痕载荷沿加载轴施加压应力,压痕下的变形区域承受压应力。因此,由于压应力的作用,孔隙将通过局部剪切成核。因此,临界损伤变量Dc可表示如下
(4) |
式中f为材料的孔隙率。由于本文中的材料是弹塑性钢材,因此,孔隙率f可取为0.2
He
(5) |
(6) |
式中:P(hp)为压痕的塑性压力;F(hp)和Ap(hp)为施加的压痕载荷和塑性变形引起的压痕投影面积,均为塑性压深hp的函数;hp和分别为塑性压深和临界塑性压深。如前文中所述,CIE方法计算断裂韧性时需要同时考虑弹性能量和塑性能量,因此,
(7) |
(8) |
式中:表示临界总压深,表示考虑弹性和塑性能量之和的总断裂能量。为了简化总断裂能量的计算过程,Sih
(9) |
(10) |
式中:W为吸收功,V为体积。
将
(11) |
本文中使用的中心线与棱面夹角为65.03°的Berkovich压头,因而压头下方投影面积
(12) |
根据
(13) |
通过对9种钢材的载荷⁃位移曲线进行二次函数拟合,从而得出SED与压痕深度h之间的关系,如

图2 9种钢材的SED随压深h的变化曲线
Fig.2 Variation of SED as a function of indentation depth h for steels
如

图3 1045碳钢在不同压深的加载-卸载曲线以及lnE与lnh间的线性关系
Fig.3 Load⁃unloading curves of 1045 carbon steel at different indentation depths and linear relationship between lnE and lnh
再根据
钢材 | Ei/GPa | Ec/GPa | /(J· | |
---|---|---|---|---|
A36 | 279 | 145 | 11.96 | 21.16 |
1020 | 312 | 162 | 16.04 | 25.38 |
1045 | 352 | 183 | 12.83 | 39.81 |
1065 | 290 | 151 | 66.17 | 91.79 |
1095 | 332 | 173 | 15.83 | 41.71 |
304L | 284 | 148 | 65.97 | 229.89 |
316 | 283 | 147 | 45.70 | 160.86 |
440C | 335 | 174 | 14.90 | 42.87 |
G8Cr15 | 252 | 131 | 37.79 | 94.62 |
根据式(
钢材 | KIC/(MPa·) | KJC/ (MPa·) | 相对误差/ % | KC100/ (MPa·) | 相对误差/ % | KC500/ (MPa·) | 相对误差/ % |
---|---|---|---|---|---|---|---|
A36 |
8 | 110.89 | 38.89 | 113.44 | 42.08 | 78.36 | 1.85 |
1020 |
9 | 97.90 | 4.15 | 83.64 | 11.03 | 90.75 | 3.45 |
1045 |
12 | 151.99 | 19.98 | 104.94 | 12.55 | 120.72 | 4.71 |
1065 |
16 | 180.28 | 8.60 | 116.30 | 29.94 | 166.38 | 0.23 |
1095 |
12 | 132.09 | 5.73 | 135.60 | 14.92 | 120.01 | 3.94 |
304L |
26 | 291.58 | 10.62 | 245.47 | 6.87 | 260.58 | 1.14 |
316 |
22 | 242.32 | 8.04 | 185.13 | 16.62 | 217.59 | 2.00 |
440C |
11 | 137.80 | 18.18 | 150.48 | 29.06 | 122.21 | 4.81 |
G8Cr15 |
15 | 167.59 | 9.68 | 177.01 | 15.69 | 157.47 | 2.92 |
(14) |
(15) |
式中:σy为抗拉强度,E和ν分别为弹性模量和泊松比。
如
如上所述,本文中同时考虑弹性及塑性能量且选取合适拟合范围获得临界总压深计算的断裂韧性KC500与
(16) |

图4 9种钢的塑性压力和总压力比较
Fig.4 Comparison of plastic pressure and total pressure for nine kinds of steels
基于CIE方法,应用Berkovich压痕试验,对确定临界压深时的弹性模量与压深的拟合范围进行了讨论,提出了一种考虑弹性能和塑性能的改进方法,并将其用于评估 9种钢的断裂韧性。结果得出以下结论:
(1) 针对CIE法在Berkovich压头的运用上,没有考虑弹性功的问题,提出了修正的方法,通过同时考虑弹性功与塑性功对材料断裂韧性的影响,提出了修正方法计算出的断裂韧性KC500与已报道的韧性KIC,相对误差减小到5%。
(2) 为减少材料表面附近弹性模量因尺寸效应对lnE与lnh拟合结果的影响,提高所确定临界压深的精确度,建议初始拟合深度应大于500 nm,或拟合深度应大于表面粗糙度的10倍。
参考文献
许昌淦, 曾忠屏. 航空用超高强度钢的动态断裂韧性[J]. 金属学报, 1990(6): 63-67. [百度学术]
XU Changgan, ZENG Zhongping. Dynamic fracture toughness of ultra-strength steels for aircraft use[J]. Acta Metallrugica Sinica, 1990(6): 63-67. [百度学术]
李鹤飞. 高强钢断裂韧性与裂纹扩展机制研究[D]. 合肥: 中国科学技术大学, 2019. [百度学术]
LI Hefei. Investigation on fracture toughness and crack growth mechanism of high-strength steels[D]. Hefei: University of Science and Technology of China, 2019. [百度学术]
ZHANG Z, MAO H, CHEN Y, et al. Dynamic fracture toughness and damage mechanism of 38CrMoAl steel under salt spray corrosion[J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103382. [百度学术]
WIANGKHAM A, ARIYARIT A, AENGCHUAN P. Prediction of the mixed mode Ⅰ/Ⅱ fracture toughness of PMMA by an artificial intelligence approach[J]. Theoretical and Applied Fracture Mechanics, 2021, 112: 102910. [百度学术]
陈今龙, 周素洪, 叶兵, 等. 纳米压痕表征技术的应用与发展[J]. 热加工工艺, 2018, 47(16): 13-17. [百度学术]
CHEN Jinlong, ZHOU Suhong, YE Bing, et al. Application and development of nanoindentation characterization technology[J]. Hot Working Technologuy, 2018, 47(16): 13-17. [百度学术]
AMIRI S, LECIS N, MANES A, et al. A study of a micro-indentation technique for estimating the fracture toughness of Al6061-T6[J]. Mechanics Research Communications, 2014, 58: 10-16. [百度学术]
HAGGAG F M, BYUN T S, HONG J H, et al. Indentation-energy-to-fracture (IEF) parameter for characterization of DBTT in carbon steels using nondestructive automated ball indentation (ABI) technique[J]. Scripta Materialia, 1998, 38(4): 645-651. [百度学术]
ZHANG T, WANG S, WANG W. A unified energy release rate based model to determine the fracture toughness of ductile metals from unnotched specimens[J]. International Journal of Mechanical Sciences, 2019, 150: 35-50. [百度学术]
JEON S W, LEE K W, KIM J Y, et al. Estimation of fracture toughness of metallic materials using instrumented indentation: Critical indentation stress and strain model[J]. Experimental Mechanics, 2017, 57(7): 1013-1025. [百度学术]
HE M, LI F, CAI J, et al. An indentation technique for estimating the energy density as fracture toughness with Berkovich indenter for ductile bulk materials[J]. Theoretical and Applied Fracture Mechanics, 2011, 56(2): 104-111. [百度学术]
LEE J S, JANG J IL, LEE B W, et al. An instrumented indentation technique for estimating fracture toughness of ductile materials: A critical indentation energy model based on continuum damage mechanics[J]. Acta Materialia, 2006, 54(4): 1101-1109. [百度学术]
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. [百度学术]
KACHANOV L. Introduction to continuum damage mechanics[M]. [S.l.]: Springer Science & Business Media, 1986. [百度学术]
SIH G C, MADENCI E. Crack growth resistance characterized by the strain energy density function[J]. Engineering Fracture Mechanics, 1983, 18(6): 1159-1171. [百度学术]
LARSSON P L, GIANNAKOPOULOS A E, SÖDERLUND E, et al. Analysis of Berkovich indentation[J]. International Journal of Solids and Structures, 1996, 33(2): 221-248. [百度学术]
HAO Y, MENG W, GUAN J, et al. Specific application method for determining the strength and fracture toughness of metal materials[J]. Theoretical and Applied Fracture Mechanics, 2023, 124: 103822. [百度学术]
LEE S. Void initiation in ductile fracture[J]. Scripta Metallurgica, 1988, 22(1): 59-64. [百度学术]
BAYOUMI M R, BASSIM M N. Study of the relationship between fracture toughness (J IC) and bulge ductility[J]. International Journal of Fracture, 1983, 23(1): 71-79. [百度学术]
ABDULKAREEM S, BUSARI R, FASHOLA L, et al. Characteristics of notched high strength materials under tension, torsion and impact loading[J]. International Journal of Engineering Materials and Manufacture, 2020, 5(3): 68-75. [百度学术]
DHAR S, DIXIT P M, SETHURAMAN R. A continuum damage mechanics model for ductile fracture[J]. International Journal of Pressure Vessels and Piping, 2000, 77(6): 335-344. [百度学术]
SHINDO Y, YAMAGUCHI Y, HORIGUCHI K. Small punch testing for determining the cryogenic fracture properties of 304 and 316 austenitic stainless steels in a high magnetic field[J]. Cryogenics, 2004, 44(11): 789-792. [百度学术]
MILLS W J. Fracture toughness of type 304 and 316 stainless steels and their welds[J]. International Materials Reviews, 1997, 42(2): 45-82. [百度学术]
BESWICK J M. Bearing steel technology[M]. West Conshohocken, PA: ASTM, 2002. [百度学术]