摘要
搅拌摩擦沉积增材(Additive friction stir deposition, AFSD)是一种先进的固相增材制造(Additive manufacturing, AM)技术。与传统基于熔融的增材制造技术相比,它具有增材结构致密、材料低变形和过程高效节能等优势,在航空装备制造、交通运输、机械制造等领域拥有广阔的应用前景。本文综述了AFSD技术的原理、优势、组织演变特点和应用情况。重点介绍了AFSD过程中“工艺条件‑微观组织‑力学性能”相关性的研究现状,沉积材料力学性能受材料流动状态、界面连接机制、微观组织演变情况的综合影响。列举了AFSD技术在大型构件整体制造、高性能涂层、表面缺陷修复等领域的应用。最后,对AFSD技术进行了展望,指出该技术在工艺与组织变化耦合、原位变形条件模拟、工具头设计和新材料增材等方面需进一步研究和突破。
增材制造(Additive manufacturing, AM)是“工业4.0”的关键组成部分,它作为制造复杂目标构件的领先技术,为复杂组件的加工提供了前所未有的设计自由度和制造灵活
近年来,搅拌摩擦沉积增材(Additive friction stir deposition, AFSD)作为一种新型3D结构增材制造技术,突破了传统的熔覆成形方式,在金属结构件的制造方面具有较大优势,成了固态金属增材制造领域的重要分
到目前为止,AFSD研究进程还处于起步阶段,该过程涉及多个工艺参数与微观结构演变之间的复杂相互作用,并最终导致沉积层机械性能的变
摩擦是焊接、沉积和加工结构金属和合金所需要的理想热源,搅拌摩擦技术成了代替传统熔融加工的潜在优势技术,这种以摩擦为前提的新型增材技术最早源于1991年英国焊接所TWI发明的FS
AFSD是由美国Aeroprobe公司(现为MELD制造公司)开发的一种固态渐进式增材制造技

图1 搅拌摩擦沉积增材制造技术原理图
Fig.1 Schematic diagram of AFSD manufacturing technology
在整个AFSD过程中,进给料经历严重的塑性变形,其中大部分变形功转化为热量。摩擦热和塑性耗散热的总和将沉积界面处温度提高至原材料熔点的60%~90%。由于界面和沉积材料的温度不会达到熔点,因此增材过程仍处于固态。同时,旋转主轴在基材上定向移动以辅助剪切沉积,与摩擦焊接不同的是,AFSD热量主要产生于工具头和沉积层的表面,而层间连接是通过顶层向下传导的热量以及工具头和进料装置施加在沉积层上的轴向压缩力实现的,这种沉积层间的伪摩擦焊接作用保证了多个沉积层之间的有效连接,最后通过逐层沉积以产生所需的几何形状。
AFSD技术具有独特的增材制造特性,与其他基于摩擦的增材技术不同,AFSD可以使用棒材、丝材、粉末等形式各异的材料作为进给
由近些年关于AFSD的研究发现,该技术适用于各种类型的原材料,从较软的铝、镁合金到较硬的镍、铬合金。这就要求该技术适应大范围的工艺参数,提供足够用的热量,以实现良好的沉积增材。
序号 | AFSD研究发展进程 | AFSD技术发展关键点 |
---|---|---|
1 |
Calver | 首次使用AFSD技术对WE43镁合金增材 |
2 |
Kandasamy | AFSD技术首次被授予专利 |
3 |
Rivera | AFSD在Ni‑Fe625、Ti‑Al硬质材料基体上增材 |
4 |
Srivastava | 最早关于AFSD技术的系统性综述 |
5 |
Phillips | 首次描述了6061铝合金工艺参数‑微观组织/结构‑力学性能之间的关系 |
6 |
Perry | 首次探究了AFSD过程中沉积界面三维形貌、形成过程以及动态组织演变情况 |
7 |
MELD公 | 使用AFSD技术进行大尺寸圆环件增材 |
8 |
Stubblefield | 开发全耦合无网格计算框架模拟AFSD沉积中材料流动 |
9 |
杨新岐 | 基于MELD工艺,自主研制设计搅拌摩擦增材设备,填补国内送丝、送棒增材设备空白 |
10 |
Wu | AFSD制备超细纳米金刚石颗粒增强铝基复合材料涂层 |
AFSD是一种逐层的材料沉积过程,虽然在这个过程中,进料的受热软化和塑性变形与搅拌摩擦焊接/摩擦堆焊十分相似,但与之不同的是,AFSD过程塑性软化的材料会被挤压在工具头和基体之间的间隙内,随着主轴移动而经历极端剪
(1) |
(2) |
(3) |
式中:Q为单位沉积长度的热输入,即工具头与基体接触界面上的总产热量;τs为工具头与基体接触界面上的接触切应力;ω为工具头旋转角速率;v为主轴横移速度;R0与Ri分别为工具头轴肩半径与进料口的半径;ρ、Cp和k分别为沉积材料的密度、比热容和导热系数;T为沉积过程中产生的温度;u为沉积材料的流动速度矢量;qp为体积产热速率;Qplastic为塑化进给料的体积耗散热,ηth为产热系数;σe和分别为等效应力和等效应变率。
由式(
AFSD中材料流动指的是沉积材料在外部力或能量作用下发生塑性变形和移动的过程,研究材料流动的目的是为了更好地理解和控制沉积过程中材料的行为,以提高沉积质量和性能。目前,研究材料流动一般采用实验和数值模拟两种方法。实验方法包括使用高速摄像技术观察材料流动行为、使用原位成像技术分析材料流场以及通过力学测试测量材料性能等。数值模拟方法则基于计算流体力学(Computational fluid mechanics, CFD)或有限元分析(Finite element analysis, FEA)等方法,通过建立数学模型来模拟材料流动过程。尽管AFSD中产生的热量与其他基于摩擦搅拌的工艺相当,但在考虑热流动和塑性流动边界条件时存在重大差异。在FSW/FSP(Friction stir processing),搅拌针在材料内部旋转(没有新材料),而在AFSD中,沉积材料受到周围工具的约束,工具头轴肩处金属原料端面和基体(或与先前沉积层)之间摩擦产生热量,热量经由搅拌区传导散热,沉积层在AFSD中不受横向约束,因此沉积区可以通过传导、自由对流和辐射进行散热。因此,AFSD过程中的材料流动特性与FSW有本质上的不同。一方面,塑性软化的材料在横向方向上没有足够的约束,可以自由流动在轴肩面与基体之
Perry

图2 沉积过程材料流动“洋葱环”形成轨
Fig.2 Trajectory of “onion ring” formation for material flow during depositio

图3 AFSD过程中材料流动情况
Fig.3 Material flow during AFSD process
在涉及异种材料时,由于材料属性的不同,在沉积过程中所展现的流动特性也各不相同。Griffiths
除了对材料流动的宏观观察,研究人员还对材料流动过程进行了数值模拟研究,Stubblefield

图4 材料流动过程数值模拟
Fig.4 Numerical simulation of material flow process
AFSD过程中材料流动特点与工艺参数、工具头几何特征、温度和应力分布情况、沉积原材料本身属性均密切相关。目前材料流动研究停留于对材料外部的宏观观察和分析,对沉积层内部材料流动原位监测与分析以及在多因素耦合影响下的材料流动尚未有相关研究出现;在数值模拟方面,虽然已经提出了相关材料流动理论模型,但不够完整和精确,由于材料流动过程受多个因素的影响,因此建立准确的数学模型是一项挑战,并仍需要进一步结合实验验证和完善。
沉积过程中界面连接区域的质量和性能直接影响整个沉积结构的强度、密实性和耐久性,沉积过程中界面连接又分为沉积层与基材的连接和沉积层间的连接。通过研究界面连接,可以优化工艺参数和材料选择,提高沉积效率和成本效益。
在沉积层与基材之间的界面连接方面,Perry

图5 沉积过程中产热机制与界面结合
Fig.5 Heat generation mechanism and interfacial bonding during the deposition process
在沉积层间的界面连接方面,杨新岐
沉积原材料的形态也对沉积后的界面结合有显著影响。Chaudhary
此外,AFSD工具头的几何特征也会影响界面材料混合,AFSD技术使用类似空心圆柱的无搅拌针工具头,文献[

图6 AFSD平直工具头与“水滴”突起工具
Fig.6 AFSD flat tool head and “teardrop” protruding tool hea
综上,沉积层与基材之间所形成的界面为非平面界面,存在明显的界面混合,界面之间存在微观互锁结构。在连续摩擦挤压的热‑力耦合作用下,沉积层间界面呈现扩散冶金连接。以粉末作为进给料时,沉积层表面形貌光洁,且层间结合良好。端面带突起的工具头会对塑性材料流施加额外的搅拌作用,可以实现较好的层间混合效果。
与基于熔融的增材制造技术相比,AFSD可以产生细小的等轴晶粒。目前,关于AFSD过程中微观组织演变的机制主要集中在研究大剪切应力和轴向力下材料发生剧烈塑性变形、连续或不连续动态再结晶以及晶粒平均尺寸减小和出现等轴细晶粒等方面。根据
合金种类 | 原始晶粒 尺寸/μm | 沉积后晶粒尺寸/μm | 晶粒细化程度/% |
---|---|---|---|
606 | 163.5±96.2 | 8.5±3.1 | 94.8 |
AA707 | 100 | 4.77 | 95.2 |
AA202 | 57.2 | 4.9 | 91.4 |
Inconel 62 | 30 | 0.5 | 98 |
Al‑Mg‑S | 113 | 10~16 | 88.5 |
Ti6Al4 | ─ | 17~26 | ─ |
AZ3 | 13.5 | 5~6 | 63 |
SS31 | 22.22±4.41 | 5.0±0.5 | 77.5 |
AFSD沉积工艺参数是影响沉积后微观组织演变的重要因素之一,通过调节AFSD技术中的工艺参数,可以对最终的微观组织进行精细调控。如

图7 沉积后Al‑Mg‑Si合金的微观结构表
Fig.7 Microstructural characterisation of Al‑Mg‑Si alloy after depositio
Agrawal

图8 不同工艺参数下沉积态SS316的晶粒和织构情
Fig.8 Grain and texture of SS316 in the as‑deposited state under different process parameter
Perry
原材料本身的物理化学属性同样是定义AFSD后微观组织质量的关键因素之一,由于原材料的热机械属性不同,材料在沉积时混合,赋予了沉积层不同的再结晶能量,从而影响后续沉积层的再结晶程度。合金元素含量以及内部相(如沉淀物)的分布和占比也会影响沉积层微观结构。文献[
在AFSD微观组织演变多尺度多物理场的模拟仿真方面,文献[
AFSD沉积物的质量主要通过其抗拉强度、硬度和疲劳强度等来评估。沉积后材料所表现出的力学性能和服役寿命的长短,决定了材料能否应用于实际工程场景,
合金 | 加工条件 | YS/MPa | UTS/MPa | A/% |
---|---|---|---|---|
AA606 | LD | 61.3±6.4 | 137.1±14.8 | — |
BD | 63.9±2.7 | 129.9±3.5 | — | |
AA707 | 基材 | 525 | 583 | 19 |
沉积后 | 140 | 295 | 16 | |
5083‑H11 | 基材 | 186.8 | 304.0 | 17.8 |
沉积后 | 179.4 | 349.6 | 19.4 | |
SS31 | 基材 | 406±5 | 600±3 | 48 |
沉积后 | 410‑425 | 640‑663 | 70‑79 | |
Ti6Al4 | 沉积后 | 1050±25 | 1140±20 | 7±1 |
GW83 | 基材 | 218.3±3.9 | 284.7±4.1 | 12.2±1.6 |
沉积后 | 229.8±6.8 | 284.4±2.8 | 9.0±2.2 |
张明

图9 沉积组织力学性能变化
Fig.9 Variation of mechanical properties of deposited tissues
Anderson
Luo
由于工具头尺寸因素和使用AFSD技术制造的构件具有类似锻造加工的性能,AFSD适用于大型构件整体制造,尤其适用于米级及以上的规模。大型整体结构件的制造对于国防工业具有重要意义,如

图10 使用AFSD技术生产的大型构件
Fig.10 Large components produced using AFSD technology
过去对于AFSD的研究主要集中在合金材料的制造方面,很少有研究使用AFSD制造金属材料涂层和复合材料涂

图11 纳米增强AA6061涂
Fig.11 Nano-enhanced AA6061 coatin
AFSD基于连续的塑性变形以及沉积层界面之间产生出色的冶金结合,更适用于体积损伤修复操作,可以消除孔洞、裂缝、磨损等缺陷。如

图12 AFSD技术应用
Fig.12 Application of AFSD technology
AFSD过程中材料受热软化并沿进给方向向前流动,总体流动趋势呈漩涡状并从工具头前进侧流向后退侧,且有向轴肩中心流动的趋势,沉积区域材料呈非对称流动,向前流动的材料和向后流动的材料相互交织。冶金结合与微观机械互锁是沉积过程中的主要连接界面机制,端面有特征突起状的工具头在沉积过程中可赋予额外搅拌作用,有利于层间混合。AFSD过程中的变形机理是连续动态或不连续再结晶,小角度晶界向大小度晶界转变,晶粒平均尺寸减小。沉积层质量受工艺参数的影响,具体取决于热输入,低的热输入(ω/v)能够产生更明显的再结晶结构,但过低的热输入会导致不连续的再结晶,不同原材料选择的ω/v也不同。动态再结晶导致沉积层力学性能变化,不同种类合金在沉积后拉伸强度变化趋势不同,但沉积层伸长率有所增加。对于铝合金来说,在一定工艺参数条件下,热输入将铝合金中的强化相溶解,沉积层中缺乏可用于提供强化的弥散相,虽然晶粒尺寸有所细化,但沉积层整体强度有所下降,前进侧与后退侧、沉积层层间硬度分布不均匀。在实际应用方面,AFSD能制造高强度涂层和复合材料涂层,有效修复孔洞、裂缝和磨损等缺陷,低热梯度和低残余应力的优势使其适用于大型构件整体制造。
(1) 目前AFSD研究主要集中在分析单一工艺参数对沉积后组织和性能的影响,缺乏对多个工艺参数之间相互耦合的综合考虑。在组织特征和性能评估方面,当前更多关注沉积后构件的组织和性能表征,对于增材过程中组织形成和演变的动态过程研究较少,对于不同沉积阶段工艺‑组织‑性能之间的关系了解不足。对增材过程中整体定性研究转变为精确定量研究是当前AFSD技术亟待突破的方向。
(2) 在实验过程中很难探测到AFSD过程中原位变形条件,如每层沉积物的温度、应力应变、材料流动等,因此对沉积过程的深入数值模拟可在探寻不同加工条件下各种原料的原位参数方面发挥重要作用。基于计算流体力学或固体力学的物理建模和模拟是对实验的补充,可以成为未来重要的研究领域。
(3) 工具头几何特征是影响沉积层材料流动和界面混合的核心要素之一,探索优化工具头形状、尺寸和表面特性,以促进均匀的材料流动和分布,寻找最佳设计以实现高质量的界面连接。研发先进的监测系统,实时监测工具头与材料之间的接触状态、温度分布、材料流动速度等参数。通过反馈控制实现对工具头几何特征的实时设计调整,以控制优化沉积层的质量和性能。
(4)通过对进给材料进行工程设计,功能梯度材料、分级材料和异质结构材料的固态增材制造将成为可能。此外,可将人工智能引入AFSD加工过程,将基于物理的策略和数据驱动的策略相结合,有效地实现沉积质量控制和工艺优化。
参考文献
TAN C, LI R, SU J, et al. Review on field assisted metal additive manufacturing[J]. International Journal of Machine Tools and Manufacture, 2023, 189: 104032. [百度学术]
ZHU Z, HU Z, SEET H L, et al. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications[J]. International Journal of Machine Tools and Manufacture, 2023,190: 104047. [百度学术]
MANJHI S K, SEKAR P, BONTHA S, et al. Additive manufacturing of magnesium alloys: Characterization and postprocessing[J]. International Journal of Lightweight Materials and Manufacture, 2024, 7(1): 184‑213. [百度学术]
RATHEE S, SRIVASTAVA M, PANDEY P M, et al. Metal additive manufacturing using friction stir engineering: A review on microstructural evolution, tooling and design strategies[J]. Cirp Journal of Manufacturing Science and Technology, 2021, 35: 560‑588. [百度学术]
PRABHAKAR D A P, SHETTIGAR A K, HERBERT M A, et al. A comprehensive review of friction stir techniques in structural materials and alloys: Challenges and trends[J]. Journal of Materials Research and Technology, 2022, 20: 3025-3060. [百度学术]
石磊, 李阳, 肖亦辰, 等. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14. [百度学术]
SHI Lei, LI Yang, XIAO Yichen, et al. Research progress of metal solid phase additive manufacturing based on friction stir[J]. Journal of Materials Engineering, 2022, 50(1): 1-14. [百度学术]
NI J, SUI Y, LIU H, et al. Applications of additive manufacturing in foreign aerospace propulsion systems[J]. Missiles and Space Vehicles, 2022(3): 144-146, 152. [百度学术]
URHAL P, WEIGHTMAN A, DIVER C, et al. Robot assisted additive manufacturing: A review[J]. Robotics and Computer-Integrated Manufacturing, 2019, 59: 335-345. [百度学术]
RENJITH S C, PARK K, OKUDAN KREMER G E. A design framework for additive manufacturing: Integration of additive manufacturing capabilities in the early design process[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(2): 329-345. [百度学术]
MUKHOPADHYAY A, SAHA P. A critical review on process metrics-microstructural evolution-process performance correlation in additive friction stir deposition (AFS-D)[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(9): 422. [百度学术]
MISHRA R S, HARIDAS R S, AGRAWAL P. Friction stir-based additive manufacturing[J]. Science and Technology of Welding and Joining, 2022, 27(3): 141-165. [百度学术]
THOMAS W M, NICHOLAS E D, NEED HAM J C, et al. Friction stir butt welding: International Patent Application No.Pct/Gb92/02203, GB patent application No.9125978.8[P]. 1991-02-20. [百度学术]
SHEN Z, YANG X, ZHANG Z, et al. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints[J]. Materials & Design, 2013, 44: 476-486. [百度学术]
GENG P, MA Y, MA N, et al. Effects of rotation tool-induced heat and material flow behaviour on friction stir lapped Al/steel joint formation and resultant microstructure[J]. International Journal of Machine Tools and Manufacture, 2022, 174: 103858. [百度学术]
CHEN H, MENG X, CHEN J, et al. Wire-based friction stir additive manufacturing[J]. Additive Manufacturing, 2023, 70: 103557. [百度学术]
KALLIEN Z, ROOS A, KNOTHE-HORSTMANN C, et al. Temperature-dependent mechanical behavior of aluminum AM structures generated via multi-layer friction surfacing[J]. Materials Science and Engineering: A, 2023, 871: 144872. [百度学术]
KANDASAMY K. Solid state joining using additive friction stir processing: US201514640077[P]. 2016-12-06. [百度学术]
SCHULTZ J P, CREEHAN K. System for continuous feeding of filler material for friction stir welding, processing and fabrication: US8875976[P]. 2014-11-04. [百度学术]
SRIVASTAVA M, RATHEE S, MAHESHWARI S, et al. A review on recent progress in solid state friction based metal additive manufacturing: Friction stir additive techniques[J]. Critical Reviews in Solid State and Materials Sciences, 2019, 44(5): 345-377. [百度学术]
GARCIA D, HARTLEY W D, RAUCH H A, et al. In situ investigation into temperature evolution and heat generation during additive Friction stir deposition: A comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34: 101386. [百度学术]
赵剑峰, 谢德巧, 梁绘昕, 等. 金属增材制造变形与残余应力的研究现状[J]. 南京航空航天大学学报, 2019, 51(1): 1-6. [百度学术]
ZHAO Jianfeng, XIE Deqiao, LIANG Huixin, et al. Research progress of monitoring and control technology for metal additive manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(1): 1-6. [百度学术]
CALVERT J R. Microstructure and mechanical properties of WE43 alloy produced via additive friction stir technology[D]. Blacksburg, VA: Virginia Polytechnic Institute and State University, 2015. [百度学术]
RIVERA O G, ALLISON P G, JORDON J B, et al. Microstructures and mechanical behavior of inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science and Engineering: A, 2017, 694: 1-9. [百度学术]
KARTHIK G M, RAM G D J, KOTTADA R S. Friction deposition of titanium particle reinforced aluminum matrix composites[J]. Materials Science and Engineering: A, 2016, 653: 71-83. [百度学术]
GRIFFITHS R J, PERRY M E J, SIETINS J M, et al. A perspective on solid-state additive manufacturing of aluminum matrix composites using MELD[J]. Journal of Materials Engineering and Performance, 2019, 28(2): 648-656. [百度学术]
PHILLIPS B J, AVERY D Z, LIU T, et al. Microstructure-deformation relationship of additive friction stir-deposition Al-Mg-Si[J]. Materialia, 2019, 7: 100387. [百度学术]
PERRY M E J, GRIFFITHS R J, GARCIA D, et al. Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition[J]. Additive Manufacturing, 2020, 35: 101293. [百度学术]
MELD Manufacturing Corporation. MELD prints 10-foot aluminum cylinder-open-air printing process used to create large cylinder with off-the-shelf aluminum[EB/OL]. (2020-08-19). https://www.digitalengineering247.com/article/meld-prints-10-foot-aluminum-cylinder/. [百度学术]
STUBBLEFIELD G G, FRASER K, PHILLIPS B J, et al. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D)[J]. Materials & Design, 2021, 202: 109514. [百度学术]
杨新岐, 田超博, 唐文珅, 等. 高强铝合金固相摩擦挤压增材制造工艺及力学性能[J]. 金属加工(热加工), 2022(6): 1-9. [百度学术]
YANG Xinqi, TIAN Chaobo, TANG Wenkun,et al. The process and mechanical properties of friction extrusion additive manufacturing of high-strength aluminum alloys[J]. Metal Working (Hot Working), 2022(6): 1-9. [百度学术]
李会朝, 王彩妹, 张华, 等. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124. [百度学术]
LI Huizhao, WANG Caimei, ZHANG Hua, et al. Research progress of friction stir additive manufacturing technology[J]. Acta Metallurgica Sinica, 2023, 59(1): 106-124. [百度学术]
WU B, PENG Y, TANG H, et al. Improving grain structure and dispersoid distribution of nanodiamond reinforced AA6061 matrix composite coatings via high-speed additive friction stir deposition[J]. Journal of Materials Processing Technology, 2023, 317: 117983. [百度学术]
SHARMA S, MANI KRISHNA K V, RADHAKRISHNAN M, et al. A pseudo thermo-mechanical model linking process parameters to microstructural evolution in multilayer additive friction stir deposition of magnesium alloy[J]. Materials & Design, 2022, 224: 111412. [百度学术]
武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277. [百度学术]
WU Chuansong, SU Hao, SHI Lei. Numerical simulation of heat generation, heat transfer and material flow in friction stir welding[J]. Acta Metallurgica Sinica, 2018, 54(2): 265-277. [百度学术]
陈刚, 武凯, 孙宇, 等. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63. [百度学术]
CHEN Gang, WU Kai, SUN Yu, et al. Research progress in additive friction stir deposition[J]. Journal of Materials Engineering, 2023, 51(1): 52-63. [百度学术]
陈立国, 王江峰, 杨国舜, 等. 搅拌摩擦焊搅拌头研究新进展[J]. 热加工工艺, 2022, 52(21): 1-7. [百度学术]
CHEN Liguo, WANG Jiangfeng, YANG Guoshun,et al. New research progress on friction stir welding tools[J]. Hot Working Technology, 2022, 52(21): 1-7. [百度学术]
GARCIA D, HARTLEY W D, RAUCH H A, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34: 101386. [百度学术]
PHILLIPS B J, MASON C J T, BECK S C, et al. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition[J]. Journal of Materials Processing Technology, 2021, 295: 117169. [百度学术]
GRIFFITHS R J, GARCIA D, SONG J, et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages[J]. Materialia, 2021, 15: 100967. [百度学术]
GOTAWALA N, YU H Z. Material flow path and extreme thermomechanical processing history during additive friction stir deposition[J]. Journal of Manufacturing Processes, 2023, 101: 114-127. [百度学术]
MARTIN L P, LUCCITTI A, WALLUK M. Evaluation of additive friction stir deposition of AISI 316L for repairing surface material loss in AISI 4340[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(3/4): 2365-2381. [百度学术]
REZAEINEJAD S S, STRIK D H, VISSER R M, et al. Solid-state additive manufacturing of AA6060 employing friction screw extrusion additive manufacturing[J]. JOM, 2023, 75(10): 4199-4211. [百度学术]
CHAUDHARY B, JAIN N K, MURUGESAN J, et al. Study of microstructure evolution and mechanical properties in friction stir based additive multi-layer manufacturing of Al 6061 alloy: Effect of feedstock material form and heat treatment[J]. Materials Today Communications, 2023, 34: 105156. [百度学术]
PERRY M E J, RAUCH H A, GRIFFITHS R J, et al. Tracing plastic deformation path and concurrent grain refinement during additive friction stir deposition[J]. Materialia, 2021, 18: 101159. [百度学术]
HARTLEY W D, GARCIA D, YODER J K, et al. Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition[J]. Journal of Materials Processing Technology, 2021, 291: 117045. [百度学术]
ZHU N, AVERY D Z, RUTHERFORD B A, et al. The effect of anodization on the mechanical properties of AA6061 produced by additive friction stir-deposition[J]. Metals, 2021, 11(11): 1773. [百度学术]
GHADIMI H, DING H, EMANET S, et al. Hardness distribution of Al2050 parts fabricated using additive friction stir deposition[J]. Materials, 2023, 16(3): 1278. [百度学术]
YU H Z. Effects of tool geometry[M]//Additive Friction Stir Deposition. [S.l.]: Elsevier, 2022: 183-201. [百度学术]
ZENG C, GHADIMI H, DING H, et al. Microstructure evolution of Al6061 alloy made by additive friction stir deposition[J]. Materials, 2022, 15(10): 3676. [百度学术]
AVERY D Z, PHILLIPS B J, MASON C J T, et al. Influence of grain refinement and microstructure on fatigue behavior for solid-state additively manufactured Al-Zn-Mg-Cu alloy[J]. Metallurgical and Materials Transactions A, 2020, 51(6): 2778-2795. [百度学术]
AGRAWAL P, HARIDAS R S, YADAV S, et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips[J]. Additive Manufacturing, 2021, 47: 102259. [百度学术]
JOSHI S S, PATIL S M, MAZUMDER S, et al. Additive friction stir deposition of AZ31B magnesium alloy[J]. Journal of Magnesium and Alloys, 2022, 10(9): 2404-2420. [百度学术]
AGRAWAL P, HARIDAS R S, YADAV S, et al. Additive friction stir deposition of SS316: Effect of process parameters on microstructure evolution[J]. Materials Characterization, 2023, 195: 112470. [百度学术]
RIVERA O G, ALLISON P G, BREWER L N, et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition[J]. Materials Science and Engineering: A, 2018, 724: 547-558. [百度学术]
AGRAWAL P, HARIDAS R S, AGRAWAL P, et al. Deformation based additive manufacturing of a metastable high entropy alloy via Additive friction stir deposition[J]. Additive Manufacturing, 2022, 60: 103282. [百度学术]
FARABI E, BABANIARIS S, BARNETT M R, et al. Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir deposition[J]. Additive Manufacturing Letters, 2022, 2: 100034. [百度学术]
AVERY D Z, CLEEK C E, PHILLIPS B J, et al. Evaluation of microstructure and mechanical properties of Al-Zn-Mg-Cu alloy repaired via additive friction stir deposition[J]. Journal of Engineering Materials and Technology, 2022, 144(3): 031003. [百度学术]
RUTHERFORD B A, AVERY D Z, PHILLIPS B J, et al. Effect of thermomechanical processing on fatigue behavior in solid-state additive manufacturing of Al-Mg-Si alloy[J]. Metals, 2020, 10(7): 947. [百度学术]
LI Y, YANG B, ZHANG M, et al. The corrosion behavior and mechanical properties of 5083 Al-Mg alloy manufactured by additive friction stir deposition[J]. Corrosion Science, 2023, 213: 110972. [百度学术]
LUO T, TANG W, WANG R, et al. Microstructure heterogeneity and mechanical properties of Mg-Gd-Y-Zr alloy fabricated by force-controlled additive friction stir deposition[J]. Materials Letters, 2023, 340: 134164. [百度学术]
张明, 李一迪, 汪辉, 等. 主轴转速对搅拌摩擦增材2219铝合金组织及性能的影响[J/OL]. 中国有色金属学报, 2023: 1-15[2023-09-06]. https://kns.cnki.net/kcms/detail/43.1238.TG.20230905.2100.004.html. [百度学术]
ZHANG Ming, LI Yidi, WANG Hui, et al. Effect of rotational speed on structure and properties of 2219 aluminum alloy manufactured by additive friction stir deposition[J/OL]. The Chinese Journal of Nonferrous Metals, 2023: 1-15[2023-09-06]. https://kns.cnki.net/kcms/detail/43.1238.TG.20230905.2100.004.html. [百度学术]
SHEN Z, ZHANG M, LI D, et al. Microstructural characterization and mechanical properties of AlMg alloy fabricated by additive friction stir deposition[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(5): 2733-2741. [百度学术]
ANDERSON W K, AVERY D Z, DANIEWICZ S R, et al. Characterization of the fatigue behavior of additive friction stir-deposition AA2219[J]. International Journal of Fatigue, 2021, 142: 105951. [百度学术]
LI Y, YANG B, ZHANG M, et al. The corrosion behavior and mechanical properties of 5083 Al-Mg alloy manufactured by additive friction stir deposition[J]. Corrosion Science, 2023,213: 110972. [百度学术]
YU H Z. Beyond metals and alloys: Additive friction stir deposition of metal matrix composites[M]//Additive Friction Stir Deposition. [S.l.]: Elsevier, 2022: 203-232. [百度学术]
AGHAJANI D H, SIMCHI A. Processing and characterizations of polycarbonate/alumina nanocomposites by additive powder fed friction stir processing[J]. Thin-Walled Structures, 2020, 157: 107086. [百度学术]
MARTIN L P, LUCCITTI A, WALLUK M. Repair of aluminum 6061 plate by additive friction stir deposition[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(3/4): 759-773. [百度学术]
GRIFFITHS R J, PETERSEN D T, GARCIA D, et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy[J]. Applied Sciences, 2019, 9(17): 3486. [百度学术]
CHOU K, EFF M, COX C D, et al. Optical image and Vickers hardness dataset for repair of 1080 steel using additive friction stir deposition of Aermet 100[J]. Data in Brief, 2022, 41: 107862. [百度学术]
GRIFFITHS R J, GOTAWALA N, HAHN G D, et al. Towards underwater additive manufacturing via additive friction stir deposition[J]. Materials & Design, 2022, 223: 111148. [百度学术]