摘要
介绍了涡轮榫接结构疲劳寿命评估技术的研究现状,分别从多场载荷分析、裂纹萌生寿命评估、裂纹扩展模拟和试验技术等方面探讨了现有研究的进展、不足以及发展趋势,重点论述了涡轮榫接结构使用寿命和损伤容限的评估方法。结果表明:现有的分析和试验方法能基本实现涡轮榫接的疲劳寿命评估,但由于各种局限性,工程适用性亟待提高,仍需稳健的载荷降阶分析方法、基于物理机制和数据驱动的寿命评估方法、载荷历程相关的裂纹扩展寿命评估方法和复杂热力环境下的试验技术,从而建立先进航空发动机涡轮榫接结构疲劳寿命评估及验证体系。
涡轮叶/盘结构作为发动机的热端部件,长时间工作在高温、高转速极端服役环境下,同时需满足质量轻、寿命长、可靠性高等苛刻且相互矛盾的指标要求,是公认的制约我国先进发动机研制的短板瓶颈。更重要地,涡轮盘作为航空发动机的军机关键件、民机限寿件,需要满足“军机涡轮盘的容许失效概率小于1
为减小发动机故障的发生,国内外发动机生产厂商和主管部门吸取历史经验教训,在发动机的结构设计、分析、验证等方面形成一系列制度和规范,如美国国防部发布的《MIL‑HDBK‑1783B发动机结构完整性大纲
为此,本文以航空发动机涡轮榫接结构为研究对象,针对设计规范中“载荷环境”“使用寿命”“损伤容限”“试验验证”相关内容,从多场载荷分析、多失效模式下裂纹萌生寿命预测、复杂载荷下的裂纹扩展分析和疲劳试验技术等方面论述研究进展,以期为航空发动机涡轮榫接结构设计提供技术支持。
涡轮榫接结构的载荷环境复杂,既要承受离心载荷、叶片传来的气动载荷,还要叠加各部位温差所产生的热应力,尤其对于发动机加减速过程,因盘心和盘缘温差导致的轮缘拉、压受力状态改变,加剧了榫接部位的疲劳损伤。此外,现代高性能航空发动机涡轮轮盘辐板厚度较薄,在气流激励下榫接部位的振动载荷也不容忽视,如

图1 涡轮榫接结构载荷特点
Fig.1 Load characteristics of turbine attachment
流‑热‑固耦合数值模拟方法主要有两种分类方式。一是根据求解流程分为整体求解法和分区求解
整体求解法将采用欧拉描述的流体域方程和采用拉格朗日描述的固体域方程结合起来,形成统一的流体/结构耦合方程,实现流体/结构的交互影响,其计算过程复杂,计算量巨大,适用性较
单向耦合方法不考虑流体域和固体域的相互耦合作用,计算效率高,适用于固体域发生小变形的情
毕绍
涡轮榫接部位振动载荷的分析涉及接触力学、摩擦学、结构动力学、空气动力学等,依赖于对系统结构动力学特征的把握,下面将从气动激励和振动响应求解两方面进行论述。
(1) 非定常气动激励计算方法
来自上游尾迹和下游势扰动,以及来流畸变、非均匀温度场等非定常气动激励是引起叶/盘结构振动的主要激励源。基于非定常流动的时空周期性和叶片几何周向循环对称性,学者发展了一系列降阶计算方法,分为时域和频域降阶方法。时域降阶方法主要包括叶片约化
Connell
王子维
(2) 干摩擦系统振动响应求解方法
在涡轮榫接的振动响应方面,基于榫接部位的局部接触非线性特点,国内外学者发展了大量的减缩模
在振动方程数值求解方面,针对叶盘结构的周期性简谐振动,通常利用谐波平衡
然而,在上述分析方法中,输入参数的改变会对响应计算分析的时间成本和收敛性产生较大影响,如减缩模型截取模态的阶数、谐波平衡法的谐波阶次会带来自由度的显著改变,而延拓步长的选择对非线性数值求解算法的鲁棒性有较大影响。此外,现有方法未考虑接触面的微动磨损,以及接触区域的塑性特征,仍需发展更为稳健的延拓技术、降阶模型和分叉分析策略,以及更符合工程实际的接触模型。
如

图2 涡轮榫接结构典型失效模式
Fig.2 Typical failure modes of turbine attachment
当循环应力水平较高、最大应力接近或超过屈服强度时,塑性应变起主导作用,材料易发生低周疲劳失效。按照分析参量的尺度,低周疲劳寿命模型分为宏观和细观模型。
宏观模型根据参量的类型可分为应力法、应变法和能量法。应力法基于材料的S‑N曲线描述循环载荷的应力幅值σa与疲劳寿命Nf之间的关系,常见的形
细观模型则从晶体塑性建模出发,获取循环载荷下细观结构的应力、应变响应,引入疲劳指标参数(Fatigue indicator parameter, FIP)来表征疲劳损伤并预测疲劳寿命,是当前疲劳寿命研究的一个重要策略和新兴方
对于蠕变‑疲劳寿命模型,按照理论体系可分为基于Manson‑Coffin方程、基于区分方法及基于损伤累积理论的模型。
(1)基于Manson‑Coffin方程的蠕变‑疲劳寿命模型:在Manson‑Coffin方程的基础上,引入时间相关的参数。Coffi
(2)基于区分方法的蠕变‑疲劳寿命模型:应变范围区分方
(3)基于损伤累积理论的蠕变‑疲劳寿命模型:综合考虑了疲劳与蠕变的过程中损伤参量的演化,Mine
高低周复合疲劳的本质是不同载荷水平下的损伤累积问题,Mine

图3 两级加载条件下损伤累积模型对比
Fig.3 Comparison of damage accumulation models under two‑stage loading conditions
然而,当振动载荷远低于疲劳极限时,上述方法将不会累积高周损伤,寿命预测结果往往非保守。鉴于此,学者基于连续损伤力学理论发展了一系列寿命模型,如Chaboche模
相较于无/有耦合项的线性损伤累积模型,基于连续损伤力学的高低周复合疲劳寿命模型的预测精度最
目前,许多学者将微动疲劳视为多轴疲劳问题。而多轴疲劳寿命预测通常采用临界平面
在微动疲劳过程中,接触面间的小幅滑动往往造成材料表面的磨损,对接触表面和亚表面应力应变产生影响。目前考虑微动磨损的方法有两大类:
(1)在临界平面法中引入磨损相关的修正项,如与拉伸应力、切应力和相对滑移相关的Ruiz参
(2)对磨损过程进行有限元仿真,结合损伤模型计算微动疲劳寿命。其中,通常使用Archard模
工程上通常基于局部应力应变法对航空发动机结构寿命进行评

图4 临界距离法示意图
Fig.4 Schematic of critical distance theory
临界距离的选取方式众多,如采用应力比和最大应力相关的临界距离法,结合能量型寿命模型,预测了榫接结构的低周疲劳寿
总而言之,目前考虑结构特征的疲劳寿命方法仍存在不同程度上的问题,梯度修正损伤参量的方法缺乏理论依据并且极度依赖于结构;临界距离法各种各样的临界距离以及权函数的选取方式都存在各自的局限性,不具有广泛的适用性,还需对结构疲劳破坏机理进行更深入的研究。
涡轮榫接结构裂纹扩展行为一般呈现以下特点:首先,榫接结构受到多场载荷的作用,呈现低周疲劳、蠕变‑疲劳、高低周复合疲劳等裂纹扩展形
低周疲劳裂纹扩展模型可分为线弹性模型及塑性累积模型两类。线弹性模型假设裂纹尖端不发生塑性变形,通过线弹性断裂力学中的应力场求解应力强度因子范围ΔK,并认为裂纹扩展速率仅依赖于远端应力范围Δσ、裂纹长度a以及应力比R。Paris
(1) |
式中C和m为材料常数。在此基础上,很多学者尝试添加更多的载荷参数(如应力比R、断裂韧度KIC),以提高模型对试验结果的描述能力,其中最具代表性的是Walker模
线弹性模型在提出之后,由于其形式简单,被工程设计人员广泛接受。然而,此模型并未考虑材料的任何微观结构特征,也未考虑具体几何结构及裂纹尖端材料的塑性行为,因此学者提出了塑性累积模型,引入塑性本构关系,考虑已断裂材料和未断裂材料的塑性变形行为,并依据其动态演化过程模拟裂纹扩展行为。部分学者认为裂纹在宏观塑性应变累积至一定程度时发生扩展,建立了用宏观塑性应变范围Δεp表征的裂纹扩展模
相较于线弹性模型,塑性累积模型与真实过程更加接近,模型预测精度更高,但塑性累积模型基于迭代步进行,在工程应用时计算量较大。
蠕变‑疲劳裂纹扩展分析的核心是表征与时间相关的蠕变损伤和与循环相关的疲劳损伤及其交互作用。按照对交互作用的考虑与否,可分为两类,一类是线性叠加模
(2) |
第二类是含交互作用项的模型,即在线性叠加模型基础上,引入蠕变和疲劳的交互作用项。典型的交互项有乘积形
(3) |
(4) |
(5) |
式中:v为载荷频率,Z为应力比相关项,A、D、m、q、p、p1、p2、p3、s、tinc均为模型参数。
总体来说,针对交互作用的表征仍以试验现象的拟合为主,不同材料适用的形式差异极大,缺乏通用性,从而增加工程应用的不确定性,仍需构建从物理机制出发的损伤耦合方法。
与蠕变‑疲劳裂纹扩展模型类似,高低周复合疲劳裂纹扩展预测模型多采用线性叠加模

图5 裂纹闭合和损伤的平衡机制
Fig.5 Equilibrium mechanisms for crack closure and damage
裂纹闭合模型认为断裂面相互作用导致卸载过程中裂纹的提前闭合以及加载过程中裂纹的延迟张开,当外部载荷低于裂纹张开应力强度因子Kop时,裂纹表面接触闭合;只有外部载荷高于Kop时,裂纹才能够继续向前扩
(6) |
(7) |
针对Kop,基于塑性诱发机制提出了多种量化形式。例如,裂纹扩展门槛值和应力比相
总体而言,基于裂纹闭合效应能够解释和模拟高、低周载荷的交互作用,但裂纹闭合的诱导机制复杂,如何在建模过程减小对试验数据的依赖是仍需解决的难题。
针对涡轮榫接结构的裂纹扩展分析,传统的方法主要包括经验公式法和有限元法。其中经验公式在拟合获取时采用简单的结构和载荷,应用在复杂结构中需要进行一定的简化,往往会造成较大的误差。而有限元方法能够精确求解复杂几何结构受复杂载荷情况下的裂纹尖端应力强度因子,具有广泛的适用范围,但计算成本较高,使用较为繁琐。比如,针对榫接结构在高低周复合载荷下的裂纹扩展行为,利用考虑干摩擦力的振动响应分析方法,得到裂尖应力强度因子和张开位移,结合考虑裂纹闭合的高低周复合疲劳裂纹扩展模型,成功实现了涡轮榫接结构裂纹扩展行为的模
针对这两种方法的弊端,以Bueckne
(8) |
式中权函数只与裂纹面的几何属性有关。Kiciak
试验是发动机寿命评估的核心环节,也是提升寿命预测方法精度的重要保障。涡轮叶/盘的整盘试验是整机试验前暴露设计缺陷、故障隐患的关键。然而,叶盘榫接结构失效模式复杂、危险部位众多,难以开展大量成本高昂的整盘验证试验,也无法依靠忽略结构特征影响的标准件试验评估各危险部位的疲劳寿命。因此,需要借助多层次试验体系,对涡轮榫接结构寿命评估进行充分验证。
多层次试验体系通常由标准件‑模拟件‑真实构件3个层次组成。(1)通过标准件试验,揭示疲劳损伤机理,构建材料的疲劳寿命模型;(2)通过单齿模拟件试验,叠加榫接结构特征,修正寿命模型,在此基础上,开展多齿模拟件试验,重点考虑多通道传力特征对裂纹扩展的影响;(3)开展涡轮榫接真实构件试验,验证寿命评估方法。其中,模拟件试验是核心关键,搭建从标准件到真实构件间的桥梁。
模拟件的本质是反映真实结构在特定载荷下的寿命,其设计方法与寿命模型密切相关。基于经典的局部应力应变法,提出了以“保证模拟件危险点的损伤控制参量(如最大主应力、最大主应变、应力分量等)与考核部位一致”为核心的设计方
临界距离法的出现为“一定范围”的量化提供了有效的解决思路。根据临界距离法的基本思想,当“临界距离内的应力或应变一致”时,认为寿命也一致。进一步将上述准则进行补充和推广,建立了适用于多种失效模式的模拟件设计准
具体到涡轮榫接模拟件的结构形式,一般可分为非接触型和接触型。非接触型主要适用于危险部位在非接触区域的榫接结构,用于设计齿

图6 涡轮榫接模拟件典型结构形式
Fig.6 Typical structure of simulated specimen of turbine attachment
目前,采用疲劳试验机和加热设备在实验室环境下开展低周疲劳、蠕变‑疲劳以及单轴下任意载荷谱试验的技术已相对成熟。然而,涡轮榫接结构承受的载荷复杂,尤其是振动载荷与离心载荷的方向不一致时,为典型的非同轴载荷,难以利用上述标准化的疲劳试验机模拟。因此,如何模拟非同轴的高、低周载荷是开展涡轮榫接结构复合疲劳试验的核心问题。
Powell
(1)采用柔性材料作为试验件夹持结构。如

图7 高低周复合疲劳试验加载装置
Fig.7 Loading equipment for combined high and low cycle fatigue test
(2)低刚度的结构形式。如
(3)采用多自由度的组合体作为夹持结构。如
总体而言,多自由度组合体的结构形式适用范围广,尤其适用于大载荷、大刚性的涡轮榫接结构的高低周复合疲劳试验。
为了更充分地捕捉试验过程的信息,辅助揭示损伤机理和建立寿命模型,需要结合先进的测试方法对高温环境下的应变、裂纹等信息进行监测。通常有接触式与非接触式两类方法,其中接触式方法主要采用电阻应变片、光纤光栅传感器(Fiber bragg grating,FBG)等;非接触式测量方法主要有光弹法、数字图像相关法(Digital image correlation,DIC)等。
对于接触式应变测量方法,高温环境对传感器、测试设备以及数据处理带来了更高的要求。由于高温电阻应变片价格较高、安装工艺复杂、易受温度影响,限制了其在高温应变监测中的应用。而FBG传感器具有耐高温、质量轻、抗电磁干扰及波分复用等优势,可实现结构应变与环境温度的测量,应用前景广

图8 FBG监测涡轮榫接应变
Fig.8 Monitoring strain of turbine attachment by FBG
在非接触式方法中,DIC法具有全场应变测量、数据采集简单、测量环境要求低、试件表面处理简便和测量精度高等优点,被应用于准静态拉伸下的高温应变测

图9 DIC监测涡轮榫接应变及裂纹
Fig.9 Monitoring strain and crack of turbine attachment by DIC
本文重点论述了航空发动机涡轮榫接结构在多场载荷分析方法、裂纹萌生寿命预测、裂纹扩展模拟方法和试验技术等方面的研究进展,得到主要结论如下:
(1)根据涡轮榫接部位的结构特点和分析需求,建立了不同耦合程度、减缩/降阶规模、求解精度的多场载荷分析方法,能够实现涡轮榫接结构载荷的准确获取。
(2)针对低周疲劳、蠕变‑疲劳、高低周复合疲劳和微动疲劳等失效模式发展了相应的寿命模型,进一步考虑榫接部位的应力梯度影响,发展了涡轮榫接结构疲劳寿命预测方法。
(3)针对榫接结构裂纹扩展寿命评估方法,研究重点在于复合疲劳载荷下循环损伤、蠕变损伤及其交互作用的量化表征,复杂应力梯度下的应力强度因子求解方法,以及榫接多通道传力特征所致变幅载荷下的裂纹扩展模拟方法。
(4)考虑结构和失效特征,建立了涡轮榫接模拟件设计方法;根据涡轮榫接的载荷特征,发展了高、低周载荷的协同加载装置,结合先进的测试技术,形成了复合疲劳试验装备,构建了涡轮榫接多层次试验体系。
为了进一步推动涡轮榫接结构寿命评估方法的工程应用,仍需开展以下几个方面的研究:
(1)在涡轮榫接多场载荷获取方面,流场参数和结构接触的准确、快速求解是两大难点。借鉴机器学习的最新进展,构建更有效的降阶模型是发展方向。具体包括:由于流热固耦合仿真较为耗时,难以生成大量样本用以构建降阶模型,需要重点研究如何基于小样本构建具有足够精度的降阶模型;此外,当存在多个不同保真度的降阶模型时,如何建立多保真度模型融合方法来更好地平衡效率和精度;当降阶模型精度不足时,如何基于使用过程中产生的大量数据,实现降阶模型的自适应更新,从而提高模型保真度。
(2)在涡轮榫接多失效模式寿命评估方面,目前大多为基于试验现象的唯象模型,复合疲劳中各类损伤的耦合作用仍缺乏物理机制的解释。随着仿真技术的发展,已经开始采用多尺度模拟方法反映疲劳失效的损伤机理,预测特定材料的低周疲劳寿命,但还需要将多尺度方法进一步拓展至复合疲劳,以期阐释低周与高周、蠕变、微动等损伤之间的耦合机制。
此外,目前针对经典模型的修正形式越来越多,模型的参数也随之增加,但在模型修正时未考虑其参数获取以及实际使用的便利性,难以推广至工程应用。随着人工智能等新一代信息技术与制造业的融合与发展,可以在基于物理机制的寿命模型基础上,结合数据驱动方法,建立起机制清晰、可信度高和工程适用的多失效模式疲劳寿命评估方法。
(3)在复合疲劳裂纹扩展分析方法方面,现有研究已初步建立了基于线性/非线性损伤累积理论的裂纹扩展模型,其在不同材料及载荷条件下的通用性仍有待验证,尤其是蠕变‑疲劳耦合载荷下的裂纹扩展模式,仍需要开展更为深入的机理研究。
此外,对于含结构特征的裂纹扩展分析方法,现有的权函数法仅考虑单轴应力状态下的非均匀应力分布,对于榫槽齿根、榫槽槽底等近似于单向拉伸状态的部位适用性较好,而对于因微动疲劳产生在接触面的裂纹,由于处于典型的多轴应力状态,现有的权函数方法难以准确评估,需进一步考虑多轴应力状态及裂纹三维特征,建立复合型裂纹扩展寿命评估方法。
(4)在试验技术方面,现有的模拟件设计方法尚未考虑模拟件加工工艺与真实榫接结构的差异性,即通常涡轮榫接结构采用拉削加工,而模拟件加工时受限于成本和效率,一般采用慢走丝线切割、铣削和磨削等方式,从而导致表面形貌、表层的残余应力等存在较大差异,即使在应力分布相同的情况下,疲劳寿命也表现出显著变化。因此,亟需在现有模拟件设计基础上,进一步考虑模拟件与真实构件的表面状态的等效性,形成更精准的模拟件设计方法。
此外,现有的复合疲劳试验常施加稳定、均匀的温度场,忽略了榫接结构温度梯度的影响。随着先进航空发动机性能的提升,涡轮榫接结构温度不均匀性会进一步明显,尤其是含气冷通道的涡轮榫接结构,温度梯度的影响难以忽视。因此,需要进一步考虑榫接结构的气冷环境,加强复杂热力环境下的试验能力;与之对应地,需要提高复杂热力环境下FBG、DIC散斑等传感器的存活率和可靠性。
参考文献
航空燃气涡轮发动机结构强度设计准则编审组. 航空燃气涡轮发动机结构强度设计准则[M]. 成都: 四川燃气涡轮研究院, 2018. [百度学术]
Editorial and Review Group. Structural strength design guidelines for aircraft turbine engine[M]. Chengdu: Sichuan Gas Turbine Research Institute, 2018. [百度学术]
Department of Defense. Engine structural integrity program: MIL‑HDBK‑1783B[S]. Washington DC: Department of Defense, 2004. [百度学术]
航空工业总公司. 航空发动机结构完整性指南:GJB/Z 101—97[S]. 北京: 国防科学技术工业委员会, 1997. [百度学术]
Aviation Industry Corporation. Engine structural integrity guidance: GJB/Z 101--97[S]. Beijing: Commission of Science, Technology and Industry for National Defense, 1997. [百度学术]
中国人民解放军总装备部. 航空涡轮喷气和涡轮风扇发动机通用规范: GJB 241A—2010 [S]. 北京: 总装备部军标出版发行部, 2010. [百度学术]
General Armament Department of PLA. General specification for aircraft turbojet and turbofan engine: GJB 241A—2010[S]. Beijing: General Equipment Department Military Standard Publishing and Distribution Department, 2010. [百度学术]
HOU G, WANG J, LAYTON A. Numerical methods for fluid‑structure interaction: A review[J]. Communications in Computational Physics, 2012, 12(2):337-377. [百度学术]
CABOS C, IHLENBURG F. Vibration analysis of ships with coupled finite and boundary elements[J]. Journal of Computational Acoustics, 2003,11(1): 91-114. [百度学术]
YOUNG Y L, CHAE E J, AKCABAY D T. Hybrid algorithm for modeling of fluid-structure interaction in incompressible, viscous flows[J]. Acta Mechanica Sinica, 2012,28(4): 1030-1041. [百度学术]
PARK H. Advanced turboprop composite propeller design and analysis using fluid-structure interaction method[J]. Composites Part B: Engineering, 2016, 97(15): 111-119. [百度学术]
STORTI M A, NIGRO N M, PAZ R R, et al. Strong coupling strategy for fluid-structure interaction problems in supersonic regime via fixed point iteration[J]. Journal of Sound and Vibration, 2009, 320 (4/5): 859-877. [百度学术]
毕绍康. 双辐板涡轮盘流热固耦合计算及优化设计[D]. 哈尔滨:哈尔滨工业大学, 2021. [百度学术]
Bi Shaokang. Fluid-thermal-machanical coupling calculation and optimization design of twin-web turbine disk[D]. Harbin: Harbin Institute of Technology, 2021. [百度学术]
ZHANG X J, CHEN W Y, HU D Y, et al. An efficient approach for parametric modeling and prediction of the hollow blade manufacture shape[J]. Aerospace, 2023, 10: 1-16. [百度学术]
高凡. 变循环发动机模式转换动态过程的流固耦合数值预测方法研究[D]. 北京: 北京航空航天大学, 2023. [百度学术]
GAO Fan. Study on numerical prediction method of fluid-structure coupling for dynamic process of variable cycle engine mode[D]. Beijing: Beihang University, 2023. [百度学术]
RAI M M. Navier-Stokes simulations of rotor-stator interactions using patched and overlaid grids[J]. Journal of Propulsion and Power, 1987, 3(5): 387-396. [百度学术]
GALPIN P F, BROBERG R B, HUTCHINSON B R. Three-dimensional Navier Stokes predictions of steady state rotor/stator interaction with pitch change[C]//Proceedings of the Third Annual Conference of the CFD Society of Canada. Banff: [s.n.], 1995. [百度学术]
LAITH Z, PAUL G, RUBENS C, et al. Time transformation simulation of a 1.5 stage transonic compressor[J]. Journal of Turbomachinery, 2017, 139(7): 071001. [百度学术]
HE L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722. [百度学术]
HALL K C, CLARK W S, LORENCE C B. A linearized Euler analysis of unsteady transonic flows in turbomachinery[J]. Journal of Turbomachinery, 1994, 116(3): 477-488. [百度学术]
HE L, NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal, 1998, 36(11): 2005-2012. [百度学术]
CONNELL S, HUTCHINSON B, GALPIN P, et al. The efficient computation of transient flow in turbine blade rows using transformation methods[C]// Proceedings of ASME Turbo Expo 2012. Copenhagen: [s.n.], 2012. [百度学术]
ZHANG X J, WANG Y R, JIANG X H. An efficient approach for predicting resonant response with the utilization of the time transformation method and the harmonic forced response method[J]. Aerospace, 2021, 8: 1-21. [百度学术]
王子维, 范召林, 江雄, 等. 用于多级压气机非定常流动的谐波平衡方法研究[J]. 推进技术, 2017, 38(11): 2512-2521. [百度学术]
WANG Ziwei, FAN Zhaolin, JIANG Xiong, et al. Investigation on harmonic balance method for simulation of unsteady flow in the multi-stage compressor[J]. Journal of Propulsion Technology, 2017, 38(11): 2512-2521. [百度学术]
CHEN T,VASANTHAKUMAR P,HE L. Analysis of unsteady blade row interaction using nonlinear harmonic approach[J]. Journal of Propulsion and Power, 2001, 17(3): 651-658. [百度学术]
MITRA M, EPUREANU B I. Dynamic modeling and projection-based reduction methods for bladed disks with nonlinear frictional and intermittent contact interfaces[J]. Applied Mechanics Reviews, 2019, 71(5): 50803. [百度学术]
THOMAS D L. Dynamics of rotationally periodic structures[J]. International Journal for Numerical Methods in Engineering, 1979, 14(1): 81-102. [百度学术]
YANG M T, GRIFFIN J H. A reduced-order model of mistuning using a subset of nominal system modes[J]. Journal of Engineering for Gas turbines and Power, 2001, 123(4): 893-900. [百度学术]
CIGEROGLU E, AN N, MENQ C H. A microslip friction model with normal load variation induced by normal motion[J]. Nonlinear Dynamics, 2007, 50(3): 609-626. [百度学术]
CRAIG R, BAMPTON M. Coupling of substructures for dynamic analyses[J]. AIAA Journal, 1968, 6(7):1313-1319. [百度学术]
BLADH R, CASTANIER M P, PIERRE C. Component-mode-based reduced order modeling techniques for mistuned bladed disks: Part Ⅰ—Theoretical models[C]//Proceedings of ASME Turbo Expo 2000: Power for Land, Sea and Air. [S.l.]: [s.n.], 2000. [百度学术]
CASTANIER M P, TAN Y C, PIERRE C. Characteristic constraint modes for component mode synthesis[J]. AIAA Journal, 2001, 39(6): 1182-1187. [百度学术]
BECK J A, BROWN J M, CROSS C J, et al. Geometric mistuning reduced-order models for integrally bladed rotors with mistuned disk-blade boundaries[J]. Journal of Turbomachinery, 2013: V07BT31A005. [百度学术]
司武林. 涡轮榫接结构振动特性分析及试验验证[D]. 北京: 北京航空航天大学, 2013. [百度学术]
SI Wulin. Study on dynamic characters of turbine bladed disk with joint and experimental verification[D]. Beijing: Beihang University, 2013. [百度学术]
CAMERON T M, GRIFFIN J H. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems[J]. Journal of Applied Mechanics, 1989, 56(1): 149-154. [百度学术]
LING H F, WU X X. Fast Galerkin method and its application to determine periodic solutions of non-linear oscillators[J]. International Journal of Non-linear Mechanics, 1987, 22(2): 89-98. [百度学术]
HARTUNG A, HACKENBERG H P, KRACK M, et al. Rig and engine validation of the nonlinear forced response analysis performed by the tool OrAgl[J]. Journal of Engineering for Gas Turbines and Power, 2018, 141(2): 21019. [百度学术]
PETROV E P. A method for use of cyclic symmetry properties in analysis of nonlinear multiharmonic vibrations of bladed disks[J]. Journal of Turbomachinery, 2004, 126(1): 175-183. [百度学术]
尹泽勇. 航空发动机设计手册(第18册): 叶片轮盘和主轴强度分析[M]. 北京: 航空工业出版社, 2001. [百度学术]
YIN Zeyong. Aircraft engine design handbook (volume 18): Strength analysis of blade, disk and shaft[M]. Beijing: Aviation Industry Press, 2001. [百度学术]
COFFIN L. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers, 1954, 76: 931-950. [百度学术]
OSTERGREN W. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue[J]. Journal of Testing and Evaluation, 1976, 4(5): 327-339. [百度学术]
SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5(4): 767-778. [百度学术]
LIU H, HU D, WANG R, et al. Experimental and numerical investigations on the influence of cold expansion on low cycle fatigue life of bolt holes in aeroengine superalloy disk at elevated temperature[J]. International Journal of Fatigue, 2020, 132: 105390. [百度学术]
田腾跃. 喷丸强化镍基高温合金表面完整性量化表征及疲劳寿命预测[D]. 北京: 北京航空航天大学, 2023. [百度学术]
TIAN Tengyue. Surface integrity quantitative characterization and fatigue life prediction of nickel-based superalloy after shot peening[D]. Beijing: Beihang University, 2023. [百度学术]
LI Y, ZHAN M, JIANG X, et al. Low-cycle fatigue behavior and life prediction of TA15 titanium alloy by crystal plasticity-based modelling[J]. Journal of Materials Research and Technology, 2023, 23: 954-966. [百度学术]
MANONUKUL A, DUNNE F. High and low cycle fatigue crack initiation using polycrystal plasticity[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 2004, 460: 1881-1903. [百度学术]
CHARKALUK E, BIGNONNET A, CONSTAN T, et al. Fatigue design of structures under thermomechanical loadings[J]. Fatigue & Fracture of Engineering Materials & Structures, 2007, 25(12): 1199-1206. [百度学术]
LIU W, HUANG J, LIU J, et al. Experimental and crystal plasticity modelling study on the crack initiation in micro-texture regions of Ti-6Al-4V during high cycle fatigue tests[J]. International Journal of Fatigue, 2021, 148: 106203. [百度学术]
易敏, 胡文轩. 晶体塑性模型及其在金属疲劳寿命预测中的应用[J]. 南京航空航天大学学报, 2023, 55(1): 12-27. [百度学术]
Yi Min, Hu Wenxuan. Crystal plasticity model and its application for fatigue life prediction of metals[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(1): 12-27. [百度学术]
COFFIN L. Prediction parameters and their application to high temperature low-cycle fatigue[C]//Proceedings of Second International Conference on Fracture. London, UK: [s.n.], 1969: 1-12. [百度学术]
胡殿印, 高晔, 马琦航, 等. 晶粒尺寸对GH720Li镍基合金蠕变-疲劳寿命的影响[J].稀有金属材料与工程, 2018, 47(8): 2386-2391. [百度学术]
HU Dianyin, GAO Ye, MA Qihang, et al. Effect of grain size on the creep-fatigue life of GH720Li superalloy[J]. Rare Metal Materials and Engineering, 2018, 47(8): 2386-2391. [百度学术]
MANSON S, HALFORD G, HIRSCHBERG M H. Creep fatigue analysis by strain-range partitioning[C]//Proceedings of the First Symposium on Design for Elevated Temperature Environment. San Francisco:[s.n.], 1971. [百度学术]
HALFORD G, SALTSMAN J. Strain range partitioning: A total strain range version[C]//Proceedings of International Conference on Advances in Life Prediction Methods. New York: American Society of Mechanical Engineers, 1983. [百度学术]
胡绪腾, 宋迎东. 总应变-应变能区分法[J]. 机械工程学报, 2007, 43(2): 219-224. [百度学术]
HU Xuteng, SONG Yingdong. Total strain version of strain energy partitioning[J]. Journal of Mechanical Engineering, 2007, 43(2): 219-224. [百度学术]
MINER M. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): 159-164. [百度学术]
ROBINSON E. Effect of temperature variation on the long-time rupture strength of steels[J]. Journal of Fluids Engineering, 1952: 777-781. [百度学术]
TAIRA S. Lifetime of structures subjected to varying load and temperature[C]//Proceedings of Creep in Structures. Berlin: [s.n.], 1962: 96-124. [百度学术]
Chaboche J. Continuum damage mechanics: Present state and future trends[J]. Nuclear Engineering & Design, 1987, 105(1): 19-33. [百度学术]
RABOTNOV Y, LECKIE F, PRAGER W. Creep problems in structural members[J]. Journal of Applied Mechanics, 1970, 37(1): 249. [百度学术]
Kim T, Kang D, Yeom J, et al. Continuum damage mechanics-based creep-fatigue-interacted life prediction of nickel-based superalloy at high temperature[J]. Scripta Materialia, 2007, 57(12): 1149-1152. [百度学术]
Yeom J, Lee C, Kim J. Continuum damage model of creep-fatigue interaction in Ni-base superalloy[J] Key Engineering Materials, 2007(1): 235‑240. [百度学术]
Sun Li, Liu Liqiang, Wang Runzi. A modified damage-coupled visco-plastic constitutive model for capturing the asymmetric behavior of a nickel-based superalloy under wide creep-fatigue loadings[J]. International Journal of Fatigue, 2022, 164: 107160. [百度学术]
ZHU S, YUE P, YU Z, et al. A combined high and low cycle fatigue model for life prediction of turbine blades[J]. Materials, 2017,10(7): 698. [百度学术]
ZHENG X, ENGLER P J, SU X, et al. Modeling of fatigue damage under superimposed high-cycle and low-cycle fatigue loading for a cast aluminum alloy[J]. Materials Science and Engineering A, 2013, 560:792-801. [百度学术]
MANSON S S, HALFORD G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17(2):169-192. [百度学术]
HAN L, HUANG D, YAN X, et al. Combined high and low cycle fatigue life prediction model based on damage mechanics and its application in determining the aluminized location of turbine blade[J]. International Journal of Fatigue, 2019, 127: 120-130. [百度学术]
NADEEM A, MAGD A. Fretting fatigue crack nucleation: A review[J]. Tribology International, 2018, 121: 121-138. [百度学术]
SZOLWINSKI M, FARRIS T. Mechanics of fretting fatigue crack formation[J]. Wear, 1996, 198(1/2):93-107. [百度学术]
FINDLEY W. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending[J]. Journal of Engineering for Industry, 1959, 81(4): 301-305. [百度学术]
FATEMI A, SOCIE D. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11: 149-65. [百度学术]
KOUANGA C T, JONES J D, REVILL I, et al. On the estimation of finite lifetime under fretting fatigue loading[J]. International Journal of Fatigue, 2018, 112: 138-152. [百度学术]
RUIZ C, BODDINGTON P, CHEN K C. An investigation of fatigue and fretting in a dovetail joint[J]. Experimental Mechanics, 1984, 24(3): 208-217. [百度学术]
蒋康河, 鄢林, 陈竞炜,等. 几何参数对涡轮榫连接微动疲劳寿命的影响:仿真[J]. 航空动力学报,2023,38(7): 1734‑1739. [百度学术]
JIANG Kanghe,YAN Lin,CHEN Jingwei, et al. Fretting fatigue life of turbine attachment under combined high and low cycle load: numerical simulation[J]. Journal of Aerospace Power,2023,38(7): 1734‑1739. [百度学术]
ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988. [百度学术]
FOUVRY S, LISKIEWICZ T, KAPSA P, et al. An energy description of wear mechanisms and its applications to oscillating sliding contacts[J]. Wear, 2003, 255(1): 287-298. [百度学术]
BERTHIER Y, VINCENT L, GODET M. Velocity accommodation in fretting[J]. Wear, 1988, 125: 25-38. [百度学术]
ZHANG L, MA S, LIU D, et al. Fretting wear modelling incorporating cyclic ratcheting deformations and the debris evolution for Ti-6Al-4V[J]. Tribology International, 2019, 136: 317-331. [百度学术]
Shi L, Wei D, Wang Y, et al. An investigation of fretting fatigue in a circular arc dovetail assembly[J]. International Journal of Fatigue, 2016, 82: 226-237. [百度学术]
ZHU S, LIU Y, LIU Q, et al. Strain energy gradient-based lcf life prediction of turbine discs using critical distance concept[J]. International Journal of Fatigue, 2018, 113: 33-42. [百度学术]
嵇大伟. 涡轮盘榫槽结构蠕变-疲劳寿命预测方法研究与验证[D]. 南京: 南京航空航天大学, 2022. [百度学术]
JI Dawei. Research and validation of creep-fatigue life prediction method for turbine disc mortise[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. [百度学术]
倪卓慧. 钛合金材料的微动疲劳寿命研究[D]. 北京: 北京航空航天大学, 2021. [百度学术]
NI Zhuohui. The study of fretting fatigue life prediction of titanium alloy[D]. Beijing: Beihang University, 2021. [百度学术]
WANG R Q, CHO C D, NIE J X. Combined fatigue life test and extrapolation of turbine disc mortise at elevated temperature[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(4): 863-868. [百度学术]
陈光. 航空燃气涡轮发动机结构设计[M]. 北京:北京航空航天大学出版社,1994. [百度学术]
CHEN Guang. Structural design of aircraft turbine engine[M]. Beijing: Beihang University Press, 1994. [百度学术]
宋兆泓. 航空发动机典型故障分析[M]. 北京:北京航空航天大学出版社,1993. [百度学术]
SONG Zhaohong. Typical failure analysis of aircraft engine[M]. Beijing: Beihang University Press, 1993. [百度学术]
PARIS P C, GOMEZ M P, Anderson W E. A rational analytic theory of fatigue[J]. The Trend in Engineering, 1961, 13: 9-14. [百度学术]
WALKER E K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[C]//Proceedings of Effects of Environment and Complex Load History on Fatigae Life.[S.l.]: American Society for Testing and Materials International, 1970. [百度学术]
FORMAN R G, KEARNEY V, ENGLE R. Numerical analysis of crack propagation in cyclic-loaded structures[J]. Journal of Fluids Engineering, 1967, 89: 459-463. [百度学术]
MAJUMDAR S,MORROW J. Correlation between fatigue crack propagation and low cycle fatigue properties[J]. American Society for Testing and Materials International, 1974. DOI.10.1520/STP385995. [百度学术]
TOMKINS B. Fatigue crack propagation-an analysis[J]. Philosophical Magazine, 1968, 18: 1041-1066. [百度学术]
MCCLINTOCK F A. On the plasticity of the growth of fatigue cracks[J]. Fracture of Solids, 1963, 20: 65-102. [百度学术]
SAXENA A, WILLIAMS R S, SHIH T T. A model for representing and predicting the influence of hold time on fatigue crack growth behavior at elevated temperature[J]. American Society for Testing and Materials Special Technical Publication, 1981: 86‑99. [百度学术]
BYRNE J, HALL R, Grabowski J. Elevated temperature fatigue crack growth under dwell conditions in Waspaloy[J]. International Journal of Fatigue, 1997, 19(5): 359‑367. [百度学术]
ZHANG Y, HUANG K, LIU H, et al. A concise and novel binomial model for creep-fatigue crack growth behaviors[J]. International Journal of Fatigue, 2020, 135: 105557.1-105557.12. [百度学术]
YANG H, BAO R, ZHANG J. An interaction crack growth model for creep-brittle superalloys with high temperature dwell time[J]. Engineering Fracture Mechanics, 2014, 124-125: 112-120. [百度学术]
赵振华, 陈伟, 吴铁鹰. 高低周复合载荷对钛合金疲劳裂纹扩展性能的影响[J]. 机械科学与技术, 2012, 31(4): 643-647. [百度学术]
ZHAO Zhenhua, CHEN Wei, WU Tieying. The effect of combined cycle fatigue load on the fatigue crack propagation of titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(4): 643-647. [百度学术]
HU D, MENG F, LIU H, et al. Experimental investigation of fatigue crack growth behavior of GH2036 under combined high and low cycle fatigue[J]. International Journal of Fatigue, 2016, 85: 1-10. [百度学术]
KUJAWSKI D. On assumptions associated with ΔKeff and their implications on FCG predictions[J]. International Journal of Fatigue, 2005, 27(10/11/12): 1267-1276. [百度学术]
SEHITOGLU H, SUN W. Modeling of plane strain fatigue crack closure[J]. Journal of Engineering Materials and Technology, 1991, 113: 31-40. [百度学术]
POWELL B E,HAWKYARD M,GRABOWSKI L. The growth of cracks in Ti-6Al-4V plate under combined high and low cycle fatigue[J]. International Journal of Fatigue, 1997, 19(97): 167‑176. [百度学术]
LIU H, HU D, WANG R, et al. Fatigue crack growth of multiple load path structure under combined fatigue loading: Part Ⅱ—Experiment study[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. [S.l.]: American Society of Mechanical Engineers, 2014. [百度学术]
LIU Y, LU Z, XU J. A simple analytical crack tip opening displacement approximation under random variable loadings[J]. International Journal of Fracture, 2012, 173(2): 189-201. [百度学术]
HU D, YANG Q, LIU H, et al. Crack closure effect and crack growth behavior in GH2036 superalloy plates under combined high and low cycle fatigue[J]. International Journal of Fatigue, 2017, 95: 90-103. [百度学术]
HU D, YAN L, GAO Y, et al. Crack growth behavior of full-scale turbine attachment under combined high and low cycle fatigue[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(9): 091002. [百度学术]
BUECKNER H F. A novel principle for the computation of stress intensity factors[J]. Journal of Applied Mathematics and Mechanics. 1970, 50(10): 529-546. [百度学术]
RICE J. Some remarks on elastic crack-tip stress field[J]. International Journal of Solids and Structures, 1972, 8(6): 751-758. [百度学术]
KICIAK A, GLINKA G, EMAN M. Weight functions and stress intensity factors for corner quarter-elliptical crack in finite thickness plate subjected to in-plane loading[J]. Engineering Fracture Mechanics, 1998, 60(2): 221-238. [百度学术]
王宁晨, 胡殿印, 刘茜,等. 基于Wiener过程的涡轮盘榫槽裂纹扩展可靠性分析[J]. 航空动力学报, 2022, 37(11): 2440-2447. [百度学术]
WANG Ningchen, HU Dianyin, LIU Xi, et al. Reliability analysis of crack growth in turbine disk mortise based on Wiener process[J]. Journal of Aerospace Power, 2022, 37(11): 2440-2447. [百度学术]
王宁晨. 涡轮盘榫槽结构疲劳裂纹扩展寿命预测及可靠性分析[D]. 北京: 北京航空航天大学, 2023. [百度学术]
WANG Ningchen. Crack growth life prediction and reliability analysis of turbine disk’s mortise[D]. Beijing: Beihang University, 2023. [百度学术]
刘廷毅, 耿瑞, 张峻峰. 发动机轮盘低循环疲劳寿命试验模拟件设计[J]. 航空动力学报, 2008, 23(1):32-36. [百度学术]
LIU Tingyi, GENG Rui, ZHANG Junfeng. Design of simulated specimen for low-cycle fatigue of turbine engine disk[J]. Journal of Aerospace Power, 2008, 23(1): 32-36. [百度学术]
陆山, 王春光, 陈军. 任意最大应力梯度路径轮盘模拟件设计方法[J]. 航空动力学报, 2010, 25(9):2000-2005. [百度学术]
LU Shan, WANG Chunguang, CHEN Jun. Design method of imitation specimen for engine disk with any maximum stress gradient path[J]. Journal of Aerospace Power, 2010, 25(9): 2000-2005. [百度学术]
杨兴宇, 董立伟, 耿中行, 等. 某压气机轮盘榫槽低循环疲劳模拟件设计与试验[J]. 航空动力学报, 2008, 23(10): 1829-1834. [百度学术]
YANG Xingyu, DONG Liwei, GENG Zhongxing, et al. Design and experimentation of simulation specimen for aeroengine compressor disk slot used in low cycle fatigue test[J]. Journal of Aerospace Power, 2008, 23(10): 1829-1834. [百度学术]
鄢林, 胡殿印, 田腾跃, 等. 榫连接结构微动疲劳模拟件设计及试验[EB/OL].(2022‑10‑18). http:Rns.cnki.net/Kcms/detail/11.2297.V.20221018.1741.005.html. [百度学术]
YAN Lin,HU Dianyin,TIAN Tengyue, et al. Design and experiment of simulated specimen for fretting fatigue of turbine attachment[EB/OL].(2022‑10‑18). http: Rns.cnki.net/Kcms/detail/11.2297.V.20221018.1741.005.html. [百度学术]
赵淼东, 胡殿印, 毛建兴, 等. 轮盘低周疲劳模拟件设计及试验研究[J]. 航空学报,2023.DOI:10.7527/S100-6893.2023.28320. [百度学术]
ZHAO Miaodong, HU Dianyin, MAO Jianxing, et al. Simulating specimen for low cycle fatigue of aero-engine’s disc: Design and experiment[J]. Acta Aeronautica et Astronautica Sinica,2023.DOI:10.7527/S100-6893.2023.28320. [百度学术]
QU Z, LIU K, WANG B, et al. Fretting fatigue experiment and finite element analysis for dovetail specimen at high temperature[J]. Applied Sciences, 2021, 11(21): 9913. [百度学术]
POWELL B, DUGGAN T. Crack growth in Ti-6Al-4V under the conjoint action of high and low cycle fatigue[J]. International Journal of Fatigue, 1987, 9(4): 195-202. [百度学术]
CROSS C. Multiaxial testing of gas turbine engine blades[C]//Proceedings of the 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit.[S.l.]: AIAA, 2000: 102514. [百度学术]
WESER S, GAMPE U, RADDATZ M, et al. Advanced experimental and analytical investigations on combined cycle fatigue (CCF) of conventional cast and single-crystal gas turbine blades[J]. Structures & Dynamics, 2011, 54662: 19-28. [百度学术]
YE L, SHEN Z, TONG L, et al. Optical properties of sapphire fiber under high temperature[C]//Proceedings of SPIE.[S.l.]: SPIE, 2002: 161-166. [百度学术]
胡殿印, 赵炎, 毛建兴,等. 一种适用于高温环境的结构损伤监测系统和方法:中国,CN115326717A[P]. 2022-11-11. [百度学术]
HU Dianyin, ZHAO Yan, MAO Jianxing, et al. A structural damage monitoring system and method for high temperature environment:China,CN115326717A[P]. 2022-11-11. [百度学术]
ZHAO Y, HU D, ZHANG M, et al. In situ measurements for plastic zone ahead of crack tip and continuous strain variation under cyclic loading using digital image correlation method[J]. Metals, 2020, 10(2):103390. [百度学术]
ZHAO Y, HU D, LIU Q, et al. High resolution and real-time measurement of 2D fatigue crack propagation using an advanced digital image correlation[J]. Engineering Fracture Mechanics, 2022, 268: 108457. [百度学术]