摘要
网络系统是一类由多个子系统通过机械或通信相互耦合所构成的系统。该系统由于其结构复杂、耦合机制多变,具有较高发生故障的概率。随着近几年人工智能的快速发展,网络系统除了可能发生物理故障,还可能存在恶意决策,为系统的安全性带来了新的威胁。本文首先针对网络系统的物理故障,从容错控制和容错优化两个角度总结和梳理当前国内外相关的研究成果。接着,沿着容错博弈控制技术发展的脉络,从博弈控制到分别面向物理故障和恶意决策的容错博弈控制,总结了相关的研究成果。进一步,梳理了当前博弈论在集群飞行器中的应用现状,并以此抛砖引玉,希望推动容错博弈成果在航空航天领域中的应用。最后给出了几个未来值得探索的研究方向。
随着人工智能技术及其相关产业的空前发展,人类社会生活和生产的方式发生了翻天覆地的变化。从系统规模的角度来看,传统的单一、独立的控制系统早已无法满足与日俱增的生产需求,取而代之的是大规模网络化和信息化的系统。从控制技术创新的角度来看,以往通常以实现系统稳定性为主要目标;而现今,如何在保证系统稳定性的同时降低系统的能源消耗、优化系统的性能成为重要的控制目标。在这样一个生产和需求相互矛盾的时代背景下,网络系统的模型和架构应运而生。网络系统是一类由多个子系统相互耦合构成的系统,包括互联系
在如此复杂的网络系统中,其安全性成为首要考虑的因素。然而由于机械老化、仪表失灵等因素导致的故障时有发
为了保障网络系统的安全性,亟需设计可靠的容错控制方法来降低甚至消除故障对系统的影响,使得系统可以稳定安全地运行。经典的容错控制方法主要分为两
随着科学技术的不断发展,仅仅维持系统的稳定性已然不够,如何优化系统的性能成为重要的控制目标。最优控制理论为实现系统性能的优化提供了结实的理论基
博弈论大致诞生于二战之后,起源于经济学,博弈论之父——冯诺依曼教授所著的《博弈论与经济行为》是博弈论学科的奠基性著
博弈论在航空航天领域发挥着重要作用,特别是集群飞行器的相关领域,博弈论可以迎合集群飞行器的任务需求,设计不同的博弈类型,实现规定的任务目标并优化系统的性能。根据集群的结构特点,其编队控制的设计可以分为基于领导者‑跟随者模式的编队控制、基于行为模式的编队控制和基于虚拟结构的编队控制
基于以上研究背景,本文将紧紧围绕以下问题进行梳理总结。
问题描述 考虑两类典型的网络系统,即通过机械耦合的互联系统和通过网络耦合的多智能体系统,并以此类网络系统的容错控制、优化与博弈为研究目标来梳理国内外相关的研究成果。
下面将从网络系统的容错控制、容错优化和容错博弈3个角度梳理现有的研究成果,并总结博弈论在集群飞行器中的应用现状,最后给出几个未来值得深入研究的方向。
本节首先总结网络系统中3种常用的控制器结构,接着根据容错控制方法的不同特点,梳理网络系统容错控制的研究成果。
根据网络系统中各个子系统之间信息交互的不同方式,容错控制器的结构可分为3种类型:集中式容错控制

图1 网络系统容错控制器的结构
Fig.1 Structure of fault-tolerant controllers for network systems
3种容错控制器的优缺点总结如下。
(1) 集中式控制器:在网络系统中设计一个集中监测器,所有的子系统将自己的信息传递给集中监测器,再通过监测器把信息传播给各个子系统。其造价昂贵,仅适用于规模较小的网络系
(2) 分布式控制器:每个子系统均可以获取其自身的信息以及邻居子系统的信息。相较于集中式控制器,分布式控制器有助于节省信息交互的代价。因此,分布式控制器更适用于大规模的网络系
(3) 分散式控制器:每个子系统仅获取与自身相关的信息。因此,分散式控制器结构较为简单,且易于实现,然而通常对系统的拓扑结构有较强的约
根据网络系统容错控制方法的不同特点,其容错控制方法可以分为独立容错控制和协同容错控
独立容错控制方法延续传统的被动/主动容错控
协同容错控制方法基于耦合机制的特点,量身定制网络系统的容错控制。文献[
独立容错控制方法是传统的单个系统的容错控制方法的直接推广。协同容错控制方法则立足于网络系统的耦合特性,进而开发出的新的容错控制方法。较之于独立容错控制方法,协同容错控制方法通过充分调动健康子系统的控制器,从而有效地避免了故障子系统容错能力的不足,保证了容错目标的顺利完成。
在保证网络系统稳定性的基础上,网络系统的性能也备受关注。本节将从网络系统的局部性能优化和全局性能优化两个角度,梳理有关网络系统容错优化的研究成果。
局部系统性能优化关注的是容错过程中子系统的性能变化情况。文献[
除了建立关于智能体本身的性能指标,还可以建立关于故障的指标作为控制器重构的依据。文献[
全局系统的性能优化关注的是容错控制过程中子系统局部性能和全局系统性能之间的平衡关系。文献[

图2 分层协同容错控制框架
Fig.2 Framework of hierarchical cooperative fault-tolerant control
另一种行之有效地可以同步实现子系统性能优化和全局系统性能优化的方法是微分博弈。文献[
局部系统性能优化方法有利于各个子系统在容错过程中单独实现各自的控制目标并进行自身系统的优化,然而由于网络系统中各个子系统相互耦合,一个子系统的性能优化可能会引起其他子系统性能的降级。为了解决这个问题,全局系统优化方法油然而生。这种方法在容错控制过程中同时兼顾了子系统局部性能和全局系统性能之间的关系,有效化解了两者相互矛盾的问题。
本节沿着容错博弈控制技术发展的进程,从网络系统的博弈控制到面向物理故障的容错博弈控制再到面向恶意决策的容错博弈控制,梳理当前相关的研究成果。
博弈控制论通过融合博弈论和控制论的共同优点,为实现网络系统的多方优化问题提供了强有力的理论基
零和博弈具有玩家双方代价之和为零的特点,即,一方获利,则另一方必然利益受
追逃博弈的玩家为追击者和逃逸者,追击者的目标是追捕逃逸者,而逃逸者的目标是逃离追击者的追
斯坦伯格博弈的玩家由领导者和跟随者构
虽然博弈控制论在各个领域呈现百花齐放之态势,然而目前针对容错控制和博弈控制的交叉研究领域的成果比较罕见。文献[
在博弈控制中,除了物理部件会发生故障,由于博弈本身的特性,玩家还有可能出现恶意决策的情形。相较于客观因素造成的物理故障,恶意决策具有玩家的主观性,带有玩家的个人感情色彩,体现玩家感知能力的差异性。恶意决策的相关研究起始于行为学,近年来随着人工智能的发展,慢慢渗透至工程领域。特别是针对人机交互的系
本节以集群飞行器执行任务过程中核心的3个环节:任务分配、航迹规划和编队控制为线索,总结和梳理博弈论在集群飞行器上的应用成果,并分析当前研究现状中3个环节的设计特点以及不足之处。
集群飞行器作为一类以通信耦合的网络系统,在军事和民用方面都发挥着重要作用,例如森林防
在任务分配环节,联盟编队博弈及其衍生的博弈可以帮助建立无人机的个体偏
在航迹规划环节,博弈可以适合集群所具有的系统规模庞大、通信耦合密切的特点,实现无人机路径的自主规划,并同时实现自主避障、最小化能耗等多方面的功
在编队控制环节,博弈能够有效地刻画各个无人机的不同目标,实现多无人机的一致性与构型保
值得一提的是,在博弈框架下,目前集群飞行器的任务分配、航迹规划和编队控制3个环节的策略通常是分开独立设计的。这有利于实现每个环节的目标,并顺着任务分配→ 路径规划→ 编队控制的方向正向调节每个环节的性能,可称之为开环设计。然而这种开环设计忽略了各个环节之间的双向互动,无法建立反馈机制,难以根据实际情况对策略进行及时地调整。因此,亟需建立针对3个环节一体化的博弈机制,使得每个环节的性能可以双向可调。据调研,目前尚未有相关的研究成果。
本文从网络系统的容错控制、容错优化和容错博弈3个角度总结了国内外相关的研究成果,并根据研究的问题、异常行为的类型以及所采取的容错控制方法将现有的代表性文献进行分类,总结为
(1) 随着科学技术的高速发展,现代控制系统呈现出复杂化和网络化的特点,其故障特性更加难以捉摸。如何结合切换系统理论、非线性系统理论和图论等理论知识,设计针对一般性线性/非线性网络系统且满足时变/切换等多种通信拓扑结构需求的容错博弈控制技术是一个挑战。
(2) 博弈论作为多边优化的有力工具,具有冲突消解的能力,如何将博弈论和容错控制理论恰如其分地融合,发挥学科交叉的优势,从而推动容错控制理论的发展是未来一个重要的研究方向。值得一提的是,目前控制领域广泛使用的零和博弈、非零和博弈等微分博弈,仅为博弈论的冰山一角。博弈论中尚存大量的博弈类型,比如共演化博弈、超模博弈等,如何汲取这些博弈的思想,并将其引入至容错控制领域,解决容错控制中难以解决的问题是一个值得深入研究的课题。
(3) 发展人工智能乃大势所趋,如何实现人‑机混合增强智能是一个值得深入研究的课题。通过结合前景理论、强化学习和深度学习等理论,研究人类行为对容错博弈控制的影响,进而设计智能容错博弈控制算法,有助于从智能决策和智能学习两个维度提升系统的安全性。
(4) 当前容错博弈控制技术大多处于理论研究阶段,未来亟需将容错博弈控制技术应用于例如卫星组网、集群无人机和智能电网等实际网络系统中,实现其安全可靠的运行,这将具有重要的实际应用价值。
参考文献
PANAGI P, POLYCARPOU M M. Decentralized fault-tolerant control of a class of interconnected nonlinear systems[J]. IEEE Transactions on Automatic Control, 2011, 56(1): 178-184. [百度学术]
TONG Shaocheng, HUO Baoyu, LI Yongming. Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1): 1-15. [百度学术]
REN Wei, CAO Yongcan. Distributed coordination of multi-agent networks: Emergent problems, models, and issues[M]. London,UK: Springer-Verlag, 2010. [百度学术]
LIU Chun, JIANG Bin, PATTON R J, et al. Hierarchical structure-based fault estimation and fault-tolerant control for multi-agent systems[J]. IEEE Transactions on Control of Network Systems, 2019, 6(2): 586-597. [百度学术]
AN Liwei, YANG Guanghong. Enhancement of opacity for distributed state estimation in cyber-physical systems[J]. Automatica, 2022, 136: 110087. [百度学术]
ZHANG Tianyu, YE Dan. False data injection attacks with complete stealthiness in cyber-physical systems: A self-generated approach[J]. Automatica, 2020, 120: 109117. [百度学术]
ZHAGN Kangkang, JIANG Bin, YAN Xinggang, et al. Incipient voltage sensor fault isolation for rectifier in railway electrical traction systems[J]. IEEE Transaction on Industrial Electronics, 2017, 64(8): 6763-6774. [百度学术]
ETESAMI S R, SAAD W, MANDAYAM N B, et al. Smart routing of electric vehicles for load balancing in smart grids[J]. Automatica, 2020, 120: 109148. [百度学术]
DUAN Haibin, LI Pei. Bio-inspired computation in unmanned aerial vehicles[M]. Berlin, Germany: Springer Heidelberg, 2014. [百度学术]
AUTILI M, CHEN L, ENGLUND C, et al. Cooperative intelligent transport systems: Choreography based urban traffic coordination[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2088-2099. [百度学术]
WILLSKY A S. A survey of design methods for failure detection in dynamic systems[J]. Automatica, 1976, 12(6): 601-611. [百度学术]
张育林, 李东旭. 动态系统故障诊断与应用[M]. 长沙: 国防科技大学出版社, 1997. [百度学术]
ZHANG Yunlin, LI Dongxu. Fault diagnosis and application of dynamic systems[M]. Changsha: National University of Defense Science and Technology Press, 1997. [百度学术]
周东华, 孙优贤. 控制系统的故障检测与诊断技术[M]. 北京: 清华大学出版社, 1994. [百度学术]
ZHOU Donghua, SUN Youxian. Fault detection and diagnosis technology of control systems[M]. Beijing: Tsinghua University Press, 1994. [百度学术]
杨浩, 姜斌, 周东华. 互联系统容错控制的研究回顾与展望[J]. 自动化学报, 2017, 43(1): 9-19. [百度学术]
YANG Hao, JIANG Bin, ZHOU Donghua. Review and prospect of fault-tolerant control of interconnected systems[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 43(1): 9-19. [百度学术]
PATTON R J, FRANK P M, CLARK R N. Issues of fault diagnosis for dynamic systems[M]. London, UK: Spring-Verlag, 2000. [百度学术]
ZHANG Youming, JIANG Jin. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Review Control, 2000, 32(2): 229-252. [百度学术]
LI Yongming, MA Zhiyao, TONG Shaocheng. Adaptive fuzzy output-constrained fault-tolerant control of nonlinear stochastic large-scale systems with actuator faults[J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2362-2376. [百度学术]
CHEN Gang, SONG Yongduan, LEWIS F L. Distributed fault-tolerant control of networked uncertain Euler-Lagrange systems under actuator faults[J]. IEEE Transactions on Cybernetics, 2017, 47(7): 1706-1718. [百度学术]
YANG Hao, STAROSWIECXKI M, JIANG Bin, et al. Fault-tolerant cooperative control for a class of nonlinear multi-agent systems[J]. Systems & Control Letters, 2011, 60(4): 271-277. [百度学术]
GE Xiaohua, HAN Qinglong, YANG Fuwen. Event-based set-membership leader-following consensus of networked multi-agent systems subject to limited communication resources and unknown but bounded noise[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5045-5054. [百度学术]
胡昌华, 许化龙. 控制系统故障诊断与容错控制的分析和设计[M]. 北京: 国防工业出版社, 2000. [百度学术]
HU Changhua, XU Hualong. analysis and design of fault diagnosis and fault-tolerant control of control systems[M]. Beijing: National Defense Industry Press, 2000. [百度学术]
姜斌, 冒泽慧, 杨浩. 控制系统的故障诊断与故障调节[M]. 北京: 国防工业出版社, 2009. [百度学术]
JIANG Bin, MAO Zehui, YANG Hao. Fault diagnosis and fault adjustment of control systems[M]. Beijing: National Defense Industry Press, 2009. [百度学术]
JIANG Jin, YU Xiang. Fault-tolerant control systems: A comparative study between active and passive approaches[J]. Annual Reviews in Control, 2012, 36(1): 60-72. [百度学术]
GAO Zhifeng, JIANG Bin, SHI Peng, et al. Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system[J]. Circuits, Systems, and Signal Processing, 2012, 31(2): 565-581. [百度学术]
BENOSMAN M, LUM K Y. Passive actuators fault-tolerant control for affine nonlinear systems[J]. IEEE Transactions on Control Systems Technology, 2010, 18(1): 152-163. [百度学术]
SHEN Qikun, JIANG Bin, COCQUEMPOT V. Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(2): 338-349. [百度学术]
GAO Zhifeng, JIANG Bin, SHI Peng, et al. Active fault-tolerant control design for reusable launch vehicle using adaptive sliding mode technique[J]. Journal of the Franklin Institute , 2012, 349(4): 1543-1560. [百度学术]
ZEHACHE S, BENSLIMANE T, BOUGUERRA A. Active fault-tolerant control based on interval type-2 fuzzy sliding mode controller and nonlinear adaptive observer for 3-DOF laboratory helicopter[J]. ISA Transactions, 2017, 71: 280-303. [百度学术]
胡寿松, 王执铨, 胡维礼. 最优控制理论与系统[M]. 北京:科学出版社, 2005. [百度学术]
HU Shousong, WANG Zhiquan, HU Weili. Optimal control theory and systems[M]. Beijing: Science Press, 2005. [百度学术]
LEWIS F L, VRABIE D, SYRMOS V L. Optimal control[M]. Hoboken: John Wiley & Sons, 2012. [百度学术]
MORGENSTERN O, NEUMANN J. Theory of games and economic behavior[M]. New Jersey, USA: Princeton University Press, 1944. [百度学术]
ISSACS R. Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization[M]. New York, USA: Dover Publications, 1999. [百度学术]
张嗣瀛. 微分对策[M]. 北京:科学出版社, 1987. [百度学术]
ZHANG Shiying. Game theory[M]. Beijing: Science Press, 1987. [百度学术]
程代展, 付世华. 博弈控制论简述[J]. 控制理论与应用, 2018, 35(5): 588-592. [百度学术]
CHENG Daizhan, FU Shihua. A survey on game control[J]. Control Theory and Application, 2018, 35(5): 588-592. [百度学术]
谭拂晓, 刘德荣, 关新平, 等. 基于微分对策理论的非线性控制回顾与展望[J]. 自动化学报, 2014, 40(1): 1-15. [百度学术]
TAN Fuxiao, LIU Derong, GUAN Xinping, et al. Review and prospect of nonlinear control based on differential game theory[J]. IEEE/CAA Journal of Automatica Sinica, 2014, 40(1): 1-15. [百度学术]
MOON J, BASAR T. Linear quadratic risk-sensitive and robust mean field games[J]. IEEE Transactions on Automatic Control, 2017, 62(3): 1062-1077. [百度学术]
MOLLOY T L, INGA J, FLAD M, et al. Inverse open-loop noncooperative differential games and inverse optimal control[J]. IEEE Transactions on Automatic Control, 2020, 65(2): 897-904. [百度学术]
YE Maojiao, HU Guoqiang, XIE Lihua, et al. Differentially private distributed Nash equilibrium seeking for aggregative games[J]. IEEE Transactions on Automatic Control, 2021.DOI: 10.1109/TAC.2021. 3075183. [百度学术]
LI Yuze, SHi Dawei, CHEN Tongwen. False data injection attacks on networked control systems: A Stackelberg-game analysis[J]. IEEE Transactions on Automatic Control, 2018, 63(10): 3503-3509. [百度学术]
ZHANG Jun, Xing Jinhao. Cooperative task assignment of multi-UAV system[J]. Chinese Journal of Aeronautics, 2020, 33(11): 2825-2827. [百度学术]
YU Ziquan, QU Yaohong, ZHANG Youming. Distributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturation[J]. IEEE Transactions on Control Systems Technology, 2018, 27(6): 2417-2429. [百度学术]
YU Ziquan, ZHANG Youming, JIANG Bin, et al. A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles[J]. Chinese Journal of Aeronautics, 2022, 35(1): 1-18. [百度学术]
LIU Chun, JIANG Bin, ZHAHG Ke. Adaptive fault-tolerant H-Infinity output feedback control for lead-wing close formation flight[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50(8): 2804-2814. [百度学术]
LOCATWLLI A, SCHIAVONI N. Reliable regulation in centralized control systems[J]. Automatica, 2009, 45: 2673-2677. [百度学术]
KHALILI M, ZHANG Xiaodong, POLYCARPOU M M, et al. Distributed adaptive fault-tolerant control of uncertain multi-agent systems[J]. Automatica, 2018, 87: 147-151. [百度学术]
XIE Chunhua, YANG Guanghong. Decentralized adaptive fault-tolerant control for large-scale systems with external disturbances and actuator faults[J]. Automatica, 2017, 85: 83-90. [百度学术]
ANGULURI R, KATEWA V, PASQUALETTI F. Centralized versus decentralized detection of attacks in stochastic interconnected systems[J]. IEEE Transactions on Automatic Control, 2020, 65(9): 3903-3910. [百度学术]
BARBONI A, REZAEE H, BOEM F, et al. Detection of covert cyber-attacks in interconnected systems: A distributed model-based approach[J]. IEEE Transactions on Automatic Control, 2020, 65(9): 3728-3741. [百度学术]
LI Xiaomei, TONG Shaocheng. Adaptive neural networks decentralized FTC design for non-strict feedback nonlinear interconnected large-scale systems against actuator faults[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(11): 2541-2554. [百度学术]
STANKOVI S S, STIPANOVI D M, ILJAK D D. Decentralized dynamic output feedback for robust stabilization of a class of nonlinear interconnected systems[J]. Automatica, 2007, 43: 861-867. [百度学术]
ZUO Zhiqiang, ZHANG Jun, WANG Yiling. Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems[J]. IEEE Transaction on Industrial Electronics, 2015, 62(6): 3923-3931. [百度学术]
SHI Jiantao, ZHOU Donghua, YANG Yuntao, et al. A fault-tolerant multivehicle formation control framework with applications in multi-quadrotor systems[J]. Science China-information Sciences, 2018, 61(12): 1-3. [百度学术]
ZHANG Ke, JIANG Bin, SHI Peng. Adjustable parameter-based distributed fault estimation observer design for multi-agent systems with directed graphs[J]. IEEE Transactions on Cybernetics, 2017, 47(2): 306-314. [百度学术]
SHEN Qikun, JIANG Bin, SHI Peng, et al. Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multi-agent systems with time-varying actuator faults[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(3): 494-504. [百度学术]
ZHANG Xiaodong, PARISINI T, POLYCARPOU M M. Adaptive fault-tolerant control of nonlinear uncertain systems: An information-based diagnostic approach[J]. IEEE Transactions on Automatic Control, 2004, 49(8): 1259-1274. [百度学术]
XU Jin. Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints[J]. Automatica, 2018, 94: 63-71. [百度学术]
PANAGI P, POLYCARPOU M M. Distributed fault accommodation for a class of interconnected nonlinear systems with partial communication[J]. IEEE Transactions on Automatic Control, 2011, 56(12): 2962-2967. [百度学术]
JIN Xiaozheng, YANG Guanghong. Distributed adaptive robust tracking and model matching control with actuator faults and interconnection failures[J]. International Journal of Control, Automation and Systems, 2009, 7(5): 702-710. [百度学术]
YANG Hao, JIANG Bin, STAROSWIECKI M, et al. Fault recoverability and fault-tolerant control for a class of interconnected nonlinear systems[J]. Automatica, 2015, 54: 49-55. [百度学术]
YANG Hao, ZHANG Chencheng, AN Zixin, et al. Exponential small-gain theorem and fault-tolerant safe control of interconnected nonlinear systems[J]. Automatica, 2020, 115: 108866. [百度学术]
DENG Chao, YANG Guanghong. Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems[J]. Automatica, 2019, 103: 62-68. [百度学术]
YU Ziquan, ZANG Youming, JIANG Bin, et al. Fractional order PID-based adaptive fault-tolerant cooperative control of networked unmanned aerial vehicles against actuator faults and wind effects with hardware-in-the-loop experimental validation[J]. Control Engineering Practice, 2021, 114: 104861. [百度学术]
KAZEROONI E S, KHORASANI K. Team consensus for a network of unmanned vehicles in presence of actuator faults[J]. IEEE Transactions on Control System Technology, 2010, 18(5): 1155‑1161. [百度学术]
YANG Hao, STAROSWIECKI M, JIANG Bin, et al. Fault-tolerant cooperative control for a class of nonlinear multi-agent systems[J]. Systems & Control Letters, 2011, 60(4): 271-277. [百度学术]
SABOORI I, KHORASANI K. Actuator fault accommodation strategy for a team of multi-agent systems subject to switching topology[J]. Automatica, 2015, 62: 200-207. [百度学术]
AZIZI S M, KHORASANI K. Cooperative actuator fault accommodation in formation flight of unmanned vehicles using relative measurements[J]. International Journal of Control, 2011, 84(5): 876-894. [百度学术]
AZIZI S M, KHORASANI K. A hierarchical architecture for cooperative actuator fault estimation and accommodation of formation flying satellites in deep space[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1428-1450. [百度学术]
TOUSI M M, KHORASANI K. Optimal hybrid fault recovery in a team of unmanned aerial vehicles[J]. Automatica, 2012, 48(2): 410-418. [百度学术]
ORGRETTIM E O, HUEBSCH W W, NARRAMORE J, et al. Investigation of relative humidity and induced-vortex effects on aircraft icing[J]. Journal of aircraft, 2007, 44(6): 1805-1814. [百度学术]
LAMPTON A, VALASEK J. Prediction of icing effects on the lateral/directional stability and control of light airplanes[J]. Aerospace Science and Technology, 2012, 23(1): 305-311. [百度学术]
XU Yuhang, JIANG Bin, YANG Hao. Two-level game-based distributed optimal fault-tolerant control for nonlinear interconnected systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4892-4906. [百度学术]
XU Yuhang, YANG Hao, JIANG Bin, et al. Distributed optimal fault estimation and fault-tolerant control for interconnected systems: A Stackelberg differential graphical game approach[J]. IEEE Transactions on Automatic Control, 2022, 67(2): 926-933. [百度学术]
BASAT T, OLSDER G J. Dynamic noncooperative game theory[M]. Philadelphia, USA: Society for Industrial and Applied Mathematics, 1999. [百度学术]
JIAO Qiang, MODARES H, XU Shengyuan, et al. Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control[J]. Automatica, 2016, 69: 24‑34. [百度学术]
SUN Jingliang, LIU Chunsheng, YE Qing. Robust differential game guidance laws design for uncertain interceptor-target engagement via adaptive dynamic programming[J]. International Journal of Control, 2017, 90(5): 990-1004. [百度学术]
SAHOO A, NARAYANAN V, JAGANNATHAN S. A min-max approach to event- and self-triggered sampling and regulation of linear systems[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5433-5440. [百度学术]
HUANG Yunhan, CHEN Juntao, HUANG Linan, et al. Dynamic games for secure and resilient control system design[J]. National Science Review, 2020, 7(17): 1125-1141. [百度学术]
JAGAT A, SINCLAIR A J. Nonlinear control for spacecraft pursuit-evasion game using the state-dependent Riccati equation method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 3032-3042. [百度学术]
MAHARJAN S, ZHU Q, ZHANG Y, et al. Dependable demand response management in the smart grid: A Stackelberg game approach[J]. IEEE Transactions on Smart Grid, 2013, 4(1): 120-132. [百度学术]
MOO N J, BASAR T. Linear quadratic mean field Stackelberg differential games[J]. Automatica, 2018, 97: 200-213. [百度学术]
FOLEY M, SCHMITENDORF W. A class of differential games with two pursuers versus one evader[J]. IEEE Transactions on Automatic Control, 1974, 19(3): 239-243. [百度学术]
LIN Wei, QU Zhihua, SIMAAN M A. Nash strategies for pursuit-evasion differential games involving limited observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1347- 1356. [百度学术]
LOPEZ V G, LEWIS F L, WAN Y, et al. Solutions for multi-agent pursuit-evasion games on communication graphs: Finite-time capture and asymptotic behaviors[J]. IEEE Transactions on Automatic Control, 2020, 65(5): 1911-1923. [百度学术]
CHEN Jie, ZHA Wenzhong, PENG Zhihong, et al. Multi-player pursuit-evasion games with one superior evader[J]. Automatica, 2016, 71: 24-32. [百度学术]
LIANG L, DENG F, LU M, et al. Analysis of role switch for cooperative target defense differential game[J]. IEEE Transactions on Automatic Control, 2021, 66(2): 902-909. [百度学术]
XU Juanjuan, ZHANG Huanshui, CHAI Tianyou. Necessary and sufficient condition for two-player Stackelberg strategy[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1356-1361. [百度学术]
YUANG Yuan, ZHANG Peng, LI Xuelong. Synchronous fault-tolerant near-optimal control for discrete-time nonlinear PE game[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10): 4432-4444. [百度学术]
ZHANG Bohan, Lu Shaobo. Fault-tolerant control for four-wheel independent actuated electric vehicle using feedback linearization and cooperative game theory[J]. Control Engineering Practice, 2020, 101: 104510. [百度学术]
ZHANG Bohan, LU Shaobo, WU Wenjuan, et al. Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics[J]. Journal of the Franklin Institute, 2021, 358(11): 5883-5908. [百度学术]
CAO Ming. Merging game theory and control theory in the era of AI and autonomy[J]. National Science Review, 2020, 7(7): 1122-1124. [百度学术]
LI Sisi, LI Nan, GIRARD A, et al. Decision making in dynamic and interactive environments based on cognitive hierarchy theory, Bayesian inference, and predictive control[C]//Proceedings of IEEE 58th Conference on Decision and Control. Nice, France: IEEE, 2019: 2181-2187. [百度学术]
KANELLOPOULOS A, VAMVOUDAKIS K G. Non-equilibrium dynamic games and cyber-physical security: A cognitive hierarchy approach[J]. Systems & Control Letters, 2019, 125: 59-66. [百度学术]
YILDIZ A, OZGULER A B. Foraging motion of swarms with leaders as Nash equilibria[J]. Automatica, 2016, 73: 163-168. [百度学术]
SUNDARAM S, HADJICOSTIS C N. Distributed function calculation via linear iterative strategies in the presence of malicious agents[J]. IEEE Transactions on Automatic Control, 2011, 56(7): 1495-1508. [百度学术]
XU Yuhang, YANG Hao, JIANG Bin, et al. Multi-player pursuit-evasion differential games with malicious pursuers[J]. IEEE Transactions on Automatic Control, 2022. DOI: 10.1109/TAC.2022.3168430. [百度学术]
YUAN C. Y, LIU Z X, ZHANG Y M. Learning-based smoke detection for unmanned aerial vehicles applied to forest fire surveillance[J]. Journal of Intelligent & Robotic Systems, 2019, 93(1): 337-349. [百度学术]
NIGAM N, BIENIAWSKI S, KROO I, et al. Control of multiple UAVs for persistent surveillance: Algorithm and flight test results[J]. IEEE Transactions on Control Systems Technology, 2011, 20(5): 1236-1251. [百度学术]
XING Na, ZONG Qun, DOU Linqiang, et al. A game theoretic approach for mobility prediction clustering in unmanned aerial vehicle networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9963-9973. [百度学术]
LUAN Heyu, XU Yitao, Liu Dianxiong. Energy efficient task cooperation for multi-UAV networks: A coalition formation game approach[J]. IEEE Access, 2020, 8: 149372-149384. [百度学术]
SAAD W, HAN Z, BASAR T, et al. Hedonic coalition formation for distributed task allocation among wireless agents[J]. IEEE Transactions on Mobile Computing, 2011, 10(9): 1327-1344. [百度学术]
CHEN Jiaxin, WU Qihui, XU Yuhua. Joint task assignment and spectrum allocation in heterogeneous UAV communication networks: A coalition formation game-theoretic approach[J]. IEEE Transactions on Wireless Communications, 2020, 20(1): 440-452. [百度学术]
JANG I, SHIN H S, TSOURDOS A A. Hedonic game for task allocation in a large-scale multiple agent system[J]. IEEE Transactions on Robotics, 2018, 34(6): 1534-1548. [百度学术]
KAZEROONI P B, GHOSE D. Self assessment-based decision making for multi-agent cooperative search[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(4): 705-719. [百度学术]
MYLVAGANAM T, SASSANO M, ASTOLFI A. Constructive epsilon-Nash equilibria for nonzero-sum differential games[J]. IEEE Transactions on Automatic Control, 2014, 60(4): 950-965. [百度学术]
CAPPELLO D, GARCIN S, MAO Z, et al. A hybrid controller for multi-agent collision avoidance via a differential game formulation[J]. IEEE Transactions on Control Systems Technology, 2020, 29(4): 1750-1757. [百度学术]
SANJAB A, SAAD W, BASAE T. A game of drones: Cyber-physical security of time-critical UAV applications with cumulative prospect theory perceptions and valuations[J]. IEEE Transactions on Communications, 2020, 68(11): 6990-7006. [百度学术]
GU Dubing. A differential game approach to formation control[J]. IEEE Transactions on Control Systems Technology, 2007, 16(1): 85-93. [百度学术]
LIN Wei, LI Chaoyong, QU Zhihua, et al. Distributed formation control with open-loop Nash strategy[J]. Automatica, 2019, 106: 266-273. [百度学术]
薛磊, 王庆领, 孙长银. 博弈论框架下的二阶多智能体系统领导者选择算法[J]. 控制理论与应 用, 2016, 33(12): 1593-1602. [百度学术]
XUE Lei, WANG Qingling, SUN Changyin. Leader selection algorithm of the second-order multi-agent system under the framework of game theory[J]. Control Theory and Application, 2016, 33(12): 1593-1602. [百度学术]
XUE Lei, CAO Xianghui. Leader selection via supermodular game for formation control in multi-agent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12): 3656-3664. [百度学术]
LI Jiaqing, CHEN Sai, LI Chaoyong, et al. Distributed game strategy for formation flying of multiple spacecraft with disturbance rejection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 57(1): 119-128. [百度学术]
茹常剑, 魏瑞轩, 戴静,等. 基于纳什议价的无人机编队自主重构控制方法[J].自动化学报, 2013, 39(8): 1349-1359. [百度学术]
RU Changjian, WEI Ruixuan, DAI Jing. Autonomous reconfiguration control method of UAV formation based on Nash bargaining[J]. IEEE/CAA Journal of Automatica Sinica, 2013, 39(8): 1349-1359. [百度学术]
KAZEROONI E S, KHORASANI K. Multi-agent team cooperation: A game theory approach[J]. Automatica, 2009, 45(10): 2205-2213. [百度学术]