摘要
基于全光谱k分布(Full spectrum k distribution,FSK)模型、MIE理论和有限体积法(Finite volume method,FVM),构建了均温、均质辐射参与性气体⁃碳黑颗粒混合物介质热辐射传输模型,并分析了碳黑不同尺寸、不同体积浓度以及介质不同路径长度和不同温度条件下,因忽略碳黑颗粒散射所导致的介质热辐射传输特性(如辐射热流、辐射源项)的计算误差。研究结果表明:体积分数不变,增大粒径,计算误差呈现出先增大后减小的趋势;数密度不变,增大粒径,或者粒径不变,增大体积分数,均将使得计算误差相应增大;粒径、体积分数不变,增大路径长度,或者升高介质温度,均将增大计算误差。通常对于含有大颗粒、高碳黑浓度的辐射参与性气体⁃碳黑颗粒混合物介质,碳黑颗粒散射不能忽略。
热辐射传输在诸如航空发动机燃烧室、燃气轮机燃烧室以及内燃机燃烧室等高温燃烧设备热传递过程中占据主导地
气体辐射特性模型分为逐线法(Line by line,LBL
针对颗粒辐射问题的研究在近几十年内得到了快速发展,包括单个颗粒辐射特性计算方法,如Rayleigh理论、MIE理论以及T⁃矩阵等,以及颗粒聚集体辐射特性计算方法,如多体T⁃矩
尽管忽略散射可以极大地简化碳黑颗粒辐射特性计算,但是对于不同的工况,直接忽略掉碳黑颗粒的散射会带来较大的计算误差,本文重点关注不同工况下,因为忽略碳黑颗粒散射而对辐射参与性气体⁃碳黑颗粒混合物辐射传热特性造成的影响。研究过程中,假设碳黑颗粒单个分散,且独立散射占优,利用Chang
对于吸收、发射和散射的辐射参与性气体⁃碳黑颗粒混合物而言,辐射强度的变化由混合物发射、吸收以及从方向散射出去和散射进入方向的辐射能之和决定。由于气体的散射系数非常小,散射可以忽略不计。因此,一维辐射参与性气体⁃碳黑颗粒混合物辐射传输方程可以写成
(1) |
边界条件为
(2) |
式中:为光谱辐射强度;为波数;为普朗克函数;为H2O和CO2组成的混合气体的光谱吸收系数;κpη为碳黑颗粒的光谱吸收系数;σpη为碳黑颗粒的光谱散射系数;Φ为辐射参与性气体⁃碳黑颗粒混合物的散射相函数;Ω为立体角;εw为壁面发射率。H2O,CO2的光谱吸收系数通过逐线
(3) |
式中:nλ和kλ分别为碳黑颗粒的折射指数和吸收指数。根据文献[
(4) |
(5) |
式中:为碳黑颗粒吸收因子,为碳黑颗粒散射因子,两者均由MIE理论得到。
全光谱k分布模型的基本思想是重排理论,即:如果在某一较小光谱间隔内普朗克函数仅仅发生微小变化时,可以将随波数剧烈变化的气体光谱吸收系数按其数值大小进行重新排列,并根据吸收系数出现的概率进行统计,从而获得气体光谱吸收系数在该光谱间隔内出现的概率分布函数,该函数通常被称为累积k分布函数;但是由于在全光谱范围内,普朗克函数会出现巨大变化,为了消除假定普朗克函数不变所带来的计算误差,需要在累积k分布函数中引入普朗克函数权重。
依据全光谱k分布模型可知,在均匀温度、均匀浓度环境中,带有普朗克权重的全光谱分布函数可以表示为
(6) |
式中:k可以是介质在温度为T时的光谱吸收系数、光谱散射系数等辐射特性参数;δ(x)为狄拉克函数(Dirac function),定义如下
(7) |
全光谱辐射特性参数的累积k分布函数为
(8) |
该函数表示小于k值的辐射特性参数对应波数间隔内普朗克函数份额占黑体辐射强度比重,0≤g≤1,累积k分布函数满足
(9) |
对

图1 H2O和CO2混合气体的光谱吸收系数和光谱重排后的吸收系数
Fig.1 Spectral absorption coefficient and reordered spectral absorption coefficient of H2O and CO2 mixture
(10) |
(11) |
式中:κg,κα和σp分别为重排后的气体吸收系数,颗粒吸收系数以及颗粒散射系数。
(12) |
(13) |
式中:一般称为非灰拉伸系数,是壁面温度与介质温度之间的函数。
总辐射强度可以通过在重排光谱g空间利用高精度求积方法获得,即有
(14) |
式中:wi为积分点权重;Igi为积分点gi处的辐射强度。文献[
(15) |
(16) |
式中:N=12;Ggi为积分点gi处的入射辐射力。为验证FSK+FVM方法的可行性,本文采用文献[

图2 FSK+FVM方法与LBL+DO
Fig.2 Comparison between FSK+FVM and LBL+DO
本文研究了

图3 不同粒径下辐射热流及其误差(工况1)
Fig.3 Heat fluxes and their relative errors under different soot particle sizes (Case 1)

图4 不同粒径下辐射源项及其误差(工况1)
Fig.4 Source terms and their relative errors under different soot particle sizes (Case 1)

图5 不同粒径光谱重排后的散射系数
Fig.5 Scattering coefficient of soot after spectral reorder under different sizes

图6 不同粒径下辐射热流及其误差(工况2)
Fig.6 Heat fluxes and their relative errors under different soot sizes (Case 2)

图7 不同粒径下辐射源项及其误差(工况2)
Fig.7 Source terms and their relative errors under different soot sizes (Case 2)

图8 不同体积浓度fv条件下辐射热流及其误差(工况3)
Fig.8 Heat fluxes and their relative errors under different soot volume fractions (Case 3)

图9 不同体积浓度条件下辐射源项及其误差(工况3)
Fig.9 Source terms and their relative errors under different soot volume fractions (Case 3)
图

图10 不同路径长度下辐射热流及其误差(工况4)
Fig.10 Heat fluxes and their relative errors at different path lengths (Case 4)

图11 不同路径长度下辐射源项及其误差(工况4)
Fig.11 Source terms and their relative errors at different path lengths (Case 4)

图12 不同温度下的热流及其误差(工况5)
Fig.12 Heat fluxes and their relative errors at different temperatures (Case 5)

图13 不同温度下的源项及其误差(工况5)
Fig.13 Source terms and their relative errors at different temperatures (Case 5)
基于全光谱k分布模型结合MIE散射理论,研究了5种工况下辐射参与性气体⁃碳黑颗粒混合物的辐射特性,分析了碳黑颗粒散射对辐射热流和辐射源项所带来的影响,在本文研究参数范围内得到主要结论如下:
(1)体积分数不变,随着粒径不断增大,碳黑颗粒数密度减少,忽略碳黑颗粒散射将高估混合物的辐射传热特性,并且所造成的计算误差呈现非单调变化规律,在粒径D=1.0 μm时,热流和源项的最大误差分别可以达到26.4%和26.3%。因此,不能简单依据粒径大小来决定能否忽略碳黑颗粒散射。
(2)数密度不变,粒径不断增大,或者粒径不变,体积分数不断增大,因忽略碳黑颗粒散射而对辐射热流和源项造成的误差均随之增大,最大误差分别可以达到6.6%,6.5%(数密度不变,增大粒径)和5.6%,5.7%(粒径不变,增大体积分数)。
(3)粒径、体积分数不变,随着路径长度增大或者介质温度升高,因忽略碳黑颗粒散射而造成的误差随之增大,最大误差分别可以达到5.3%,5.5%(路径长度增大)和23.1%,23.4%(温度升高)。
综上可知,在工程应用中能否忽略碳黑颗粒散射对整个辐射参与性气体⁃碳黑颗粒混合物辐射传热特性的影响不能简单依据颗粒粒径来判断,还需要充分考虑介质路径长度、温度及碳黑颗粒浓度等多种因素影响。
参考文献
Modest M F,Haworth D C. Radiative heat transfer in turbulent combustion systems theory and applications[M]. New York: Springer, 2015: 43-45. [百度学术]
吴国江. 电站煤粉锅炉炉膛对流换热的分析[J]. 上海交通大学学报, 1998, 32(1): 119-121. [百度学术]
Wu Guojiang.Analysis of convection heat transfer in pulverized-fuel boiler furnace[J].Journal of Shanghai Jiaotong University,1998,32(1): 119-121. [百度学术]
Dannecker R, Noll B, Schildmacher K U, et al. Impact of radiation on the wall heat load at a test bench gas turbine combustion chamber: Measurements and CFD simulation[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea & Air. Montreal, Canada: [百度学术]
[s.n.], 2007: 1311-1321. [百度学术]
Akwaboa S,Mensah P, Diwan R. Effects of thermal radiation on air plasma spray (APS) coated gas turbine blade[C]//Proceedings of ASME Turbo Expo 2010. Glasgow,UK: [s.n.], 2010. [百度学术]
MODEST M F. Radiative heat transfer-3rd edition[M]. New York:Academic Press,2013: 418-425. [百度学术]
Johansson R, Leckner B, Andersson K,et al. Influence of particle and gas radiation in oxy-fuel combustion[J]. International Journal of Heat and Mass Transfer,2013, 65: 143-152. [百度学术]
Alexander L B,Thomas H F. Modeling soot derived from pulverized coal[J]. Energy & Fuels, 1998,12: 745-757. [百度学术]
Adams B R, Smith P J. Modeling effects of soot and turbulence-radiation coupling on radiative transfer in turbulent gaseous combustion[J]. Combustion Science and Technology,1995, 109(1/2/3/4/5/6): 121-140. [百度学术]
许开龙,吴玉新,申浩树,等. 煤粉火焰中碳烟生成及其辐射换热——模型开发与FLUENT实现[J]. 中国电机工程学报,2017,37(20): 5961-5969. [百度学术]
Xu Kailong, Wu Yuxin, Shen Haoshu, et al. Soot formation and its radiative heat transfer in coal flames: Model development and implementation with fluent[J]. Proceedings of the CSEE,2017,37(20): 5961-5969. [百度学术]
Omidvarborna H, Kumar A, Kim D S. Recent studies on soot modeling for diesel combustion[J]. Renewable and Sustainable Energy Reviews,2015,48: 635-647. [百度学术]
Arnold J O, Whiting E E, Lyle G C. Line by line calculation of spectra from diatomic molecules and atoms assuming a voigt line profile[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1969, 9(6): 775-798. [百度学术]
Schenker G N, Keller B. Line-by-line calculations of the absorption of infrared radiation by water vapor in a boxshaped enclosure filled with humid air[J]. International Journal of Heat and Mass Transfer, 1995, 38(17): 3127-3134. [百度学术]
Modest M F. The treatment of nongray properties in radiative heat transfer_from past to present[J]. Journal of Heat Transfer, 2013, 135: 061801-1-061801-12. [百度学术]
Dorigon L J, Duciak G, Rogério B, et al. WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures[J]. International Journal of Heat and Mass Transfer, 2013, 64: 863-873. [百度学术]
Solovjov V P, Webb B W. SLW modeling of radiative transfer in multicomponent gas mixtures[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 65: 665-672. [百度学术]
Modest M F, ZHANG Hongmei. The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures[J]. Journal of Heat Transfer,2002,124: 30-38. [百度学术]
Zhang Hongmei, Modest M F. Scalable multi-group full-spectrum correlated-k distributions for radiative transfer calculations[J]. Journal of Heat Transfer, 2003, 125: 454-461. [百度学术]
Mishchenko M I, Travis L D, Lacis A A. Scattering, absorption, and emission of light by small particles[M]. [S.l.]: Cambridge University Press, 2002. [百度学术]
Xu Yulin, Khlebtsov N G. Orientation-averaged radiative properties of an arbitrary configuration of scatterers[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2003, 79: 1121-1137. [百度学术]
Wang Chaojun, Modest M F,He Boshu. Full-spectrum k-distribution look-up table for nonhomogeneous gas-soot mixtures[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 176: 129-136. [百度学术]
Trivic D N. 3-D radiation modeling of nongray gases⁃particles mixture by two different numerical methods[J]. International Journal of Heat and Mass Transfer, 2014, 70: 298-312. [百度学术]
Marakis J M,Papapavlou C, Kakaras E. A parametric study of radiative heat transfer in pulverised coal furnaces[J]. International Journal of Heat and Mass Transfer, 2000, 43: 2961-2971. [百度学术]
Chang H,Charalampopoulos T T. Determination of the wavelength dependence of refractive indices of flame soot[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1990,430(1880): 577⁃591. [百度学术]
Hofgren H,Sundén B. Evaluation of Planck mean coefficients for particle radiative properties in combustion environments[J]. Heat and Mass Transfer, 2014, 51(4): 507-519. [百度学术]
Bahador M,Sundén B. Investigation on the effects of fly ash particles on the thermal radiation in biomass fired boilers[J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2411-2417. [百度学术]
谈和平,夏新林,刘林华,等. 红外辐射传输与传输数值计算——计算热辐射学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 107-115. [百度学术]
Tan Heping, Xia Xinlin, Liu Linhua, et al. Numerical calculations of infrared radiative characteristics and transmission—Calculation of thermal radiation[M]. Harbin: Harbin Institute of Technology Press,2006: 107-115. [百度学术]
Wang Chaojun,Ge Wenjun,Modest M F. A full-spectrum k-distribution look-up table for radiative transfer in nonhomogeneous gaseous media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 168: 46-56. [百度学术]
Chu Huaqiang,Liu Fengshan, Consalvi J L. Relationship between the spectral line based weighted -sum-of-gray-gases model and the full spectrum k-distribution model[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 143: 111-120. [百度学术]
Guo Junjun,Li Xiangyu,Huang Xiaohong,et al. A full spectrum k-distribution based weighted-sum-of-gray-gases model for oxy-fuel combustion[J]. International Journal of Heat and Mass Transfer, 2015, 90: 218-226. [百度学术]
Chu Huaqiang,Liu Fengshan,Zhou Huaichun. Calculations of gas thermal radiation transfer in one-dimensional planar enclosure using LBL and SNB models[J]. International Journal of Heat and Mass Transfer, 2011, 54(21): 4736-4745. [百度学术]
Liu Fengshan. Application of the statistical narrow-band correlated-k method to low-resolution spectral intensity and radiative heat transfer calculations-effects of the quadrature scheme[J]. International Journal of Heat and Mass Transfer, 2000, 43: 3119-3135. [百度学术]