en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BURGESSR K. Development of the ABC rotor[C]//The 27th Annual National V/STOL Forum of the American Helicopter Society. Washington, D C: AHS, 1971: 1⁃16.
参考文献 2
SCHMAUSJ, CHOPRAI. Performance and loads prediction for a high advance ratio coaxial helicopter[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2015: 1⁃17.
参考文献 3
LORBERP, BOWLESP. Wind tunnel testing for the SB1 defiantTM joint multi⁃role technology demon⁃strator[C]//American Helicopter Society 73rd Ann⁃ual Forum. Texas: AHS, 2017: 1⁃18.
参考文献 4
YEO H, JOHNSONW. Investigation of maximum blade loading capability of lift⁃offset rotors[C]//Amer⁃ican Helicopter Society 69th Annual Forum. Phoenix: AHS, 2013: 1⁃16.
参考文献 5
SCHMAUSJ, CHOPRAI. Aeromechanics for a high advance ratio coaxial helicopter[C]//American Helicopter Society 71st Annual Forum. Virginia: AHS, 2015: 1⁃15.
参考文献 6
PAGLINOV M, BENOE A. Full⁃scale wind⁃tunnel investigation of the advancing blade concept rotor system[R]. USAAMRDL Technical Report, 1971:71⁃25.
参考文献 7
VINCENTM. Forward flight performance of a coaxial rigid rotor[C]//The 27th Annual National V/STOL Forum of the American Helicopter Society. Washington, DC: AHS, 1971: 1⁃15.
参考文献 8
FELKERF F. Performance and loads data from a wind tunnel test of a full⁃scale coaxial hingeless rotor helicopter[R]. NASA⁃TM⁃81329, 1981.
参考文献 9
WALSHD. WEINER S. Development testing of the sikorsky X2 technology demonstrator[C]//American Helicopter Society 65th Annual Forum. Grapevine: AHS, 2009: 1⁃11.
参考文献 10
LORBERP, LAW G. Overview of S⁃97 RAIDER(TM) scale model tests[C]//American Helicopter Society 72nd Annual Forum. West Palm Beach: AHS, 2016: 1⁃17.
参考文献 11
MCALISTERK. Experimental study of a hovering coaxial rotor with highly twisted blades[C]//Ame⁃rican Helicopter Society 64th Annual Forum. Montreal Canada: AHS, 2008: 1⁃17.
参考文献 12
CAMERONC, KARPATNEA, SIROHIJ. Performance and vibratory hub loads of a mach⁃scale coaxial rotor in hover[C]//American Helicopter Soci⁃ety 70th Annual Forum. Montreal Canada: AHS, 2014: 1⁃9.
参考文献 13
SINGHR, KANGH. Computational investigations of transient loads and blade deformations on coaxial rotor systems[C]//The 33rd AIAA Applied Aerody⁃namics Conference. Dallas: AIAA, 2015: 1⁃11.
参考文献 14
CAMERONC, SIROHIJ, UEHARAD. Transient hub loads and blade deformation of a mach⁃scale coa⁃xial rotor in hover[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2015: 1‑11.
参考文献 15
CAMERONC, SIROHIJ. Performance and loads of a model coaxial rotor part I: Wind tunnel testing[C]//American Helicopter Society 72nd Annual Forum. West Palm Beach: AHS, 2016: 1⁃15.
参考文献 16
FEILR, RAULEDERJ. Aeromechanics analysis of a coaxial rotor system in hover and high⁃advance⁃ratio forward flight[C]//The AIAA Applied Aerody⁃namics Conference. Washington: AIAA, 2016: 1⁃19.
参考文献 17
邓彦敏, 陶然, 胡继忠. 共轴式直升机上下旋翼之间气动干扰的风洞实验研究[J]. 航空学报, 2003, 24(1): 10⁃14.
DENGYanmin, TAORan, HUJizhong. Experimental investigation of the aerodynamic interaction between upper and lower rotors of a coaxial helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 10⁃14.
参考文献 18
马杨超, 于世美, 邓彦敏. 共轴式双旋翼悬停诱导速度场的PIV试验研究[J]. 实验流体力学, 2012, 26(1): 16⁃20.
YangchaoMA, YUShimei, DENGYanmin. PIV experimental investigation of coaxial rotor induced velocity field in hover[J]. Journal of Experimental in Fluid Mechanics, 2012, 26(1): 16⁃20.
参考文献 19
叶靓, 徐国华. 共轴式双旋翼悬停流场和气动力的CFD计算[J].空气动力学学报, 2012, 30(4):437⁃442.
LiangYEI, XUGuohua. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J].Acta Aerodynamica Sinica, 2012, 30(4):437⁃442.
参考文献 20
李文浩. 复合式高速直升机旋翼/机身气动干扰特性的CFD分析[D]. 南京:南京航空航天大学, 2012.
LIWenhao. Analysis on aerodynamic interactions of the compound high⁃speed helicopter rotor/fuselage ba⁃sed on CFD[D]. Nanjing: Nanjing University of Aer⁃onautics and Astronautics, 2012.
参考文献 21
张银. 复合式共轴刚性旋翼直升机气动干扰及飞行特性分析[D]. 南京:南京航空航天大学, 2014.
ZHANGYin. Research on aerodynamic interaction and flight characteristics of compound helicopter with rigid coaxial rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
参考文献 22
JOHNSONW. A general free wake geometry calculation for wings and rotors[C]//American Heli⁃copter Society 72nd Annual Forum. Texas: AHS, 2014: 1⁃17.
目录 contents

    摘要

    针对共轴刚性旋翼上下旋翼间复杂气动干扰问题,利用4 m直径共轴刚性旋翼缩比模型开展了悬停及前飞状态风洞试验研究。试验中,采用两套六分量天平对共轴刚性旋翼的上下旋翼进行分开测力,并测量了相同操纵量输入时的孤立单旋翼气动力。通过分析双旋翼状态下的上下旋翼与孤立单旋翼的气动力的对比结果,研究了共轴刚性旋翼在悬停及前飞状态下的气动干扰特性。在此基础上,还进行了升力偏置对气动干扰影响的试验研究。结果表明:随着旋翼前进比的增大,上下旋翼之间的气动干扰逐渐减弱,共轴刚性旋翼的非对称气动干扰会使得双旋翼升力偏置增大。

    Abstract

    The wind tunnel of a 4 m⁃diameter coaxial rigid model rotor is conducted to investigate the aero⁃dynamic interaction characteristics. Both coaxial and single rotor are tested, and the upper and lower rotor forces are measured independently. The force distribution of the coaxial rotor is analyzed. The aerodynamic forces and lift offset characteristics of coaxial and single rotor are compared. Simultaneity, the free wake method is used to analyze the tip vortex wake characteristic under interference. It is shown that the coaxial rigid rotor interaction is weaken as advance ratio increases, and the coaxial rigid rotor lift offset increases due to the asymmetry aerodynamic interaction.

    共轴刚性旋翼高速直升机是当前高速直升机的重要研究方[1,2,3]。共轴刚性旋翼采用前行桨叶概念,利用前行桨叶产生升力,对后行桨叶进行卸载,并通过上下反转旋翼抵消气动不对称引起的滚转力[4‑5]。后行侧卸载减弱了动态失速对飞行速度的限制,同时上下旋翼采用较小的轴间距以减小桨毂阻力,这些措施使其飞行速度能够得到大幅度提升。然而,共轴刚性旋翼上下旋翼轴向间距的减小也加剧了两者间气动干扰;同时,由于共轴刚性旋翼的操纵方式与常规共轴双旋翼存在较大区别,这也使得共轴刚性旋翼气动干扰特性存在一些特殊性。因此,本文针对共轴刚性旋翼气动干扰特性进行深入研究具有重要意义。

    虽然目前以计算流体力学(Computational fluid dynamics,CFD)为代表的直升机旋翼气动分析方法发展得很快,但由于共轴刚性旋翼气动特性复杂,且操纵策略独特,使得数值计算更加困难,因此,开展风洞试验仍然是研究共轴刚性旋翼气动干扰特性的重要手段。由于该类型风洞试验难度较大,根据文献资料的搜索情况来看,仅有美国开展了相关研究。在20世纪70年代,美国西科斯基公司首次进行了共轴刚性旋翼全尺寸模型的风洞试验,获得了旋翼的气动数[6‑7],后续在20世纪80年代进行了XH⁃59A全尺寸旋翼风洞试[8],研究了旋翼的性能和载荷特性。这两次试验未单独给出上下旋翼的气动力,也并未过多研究双旋翼之间的气动干扰特性。近几年,随着X2和S97高速直升机的研[9‑10],美国多个研究机构针对共轴刚性旋翼进一步开展了试验研究工[11,12,13,14],其中马里兰大学进行了共轴刚性旋翼缩比模型风洞试[15‑16],试验中对上下旋翼单独测力,研究了双旋翼气动干扰特点,然而文献中并未给出孤立单旋翼前飞状态的对比测试结果。在国内,北京航空航天大学的邓彦敏、马杨超[17‑18]等对常规共轴旋翼的气动特性进行了风洞试验测试,研究了其干扰特点,由于受试验条件限制,在试验中桨尖马赫数并未超过0.3 Ma。南京航空航天大学的徐国华等采用CFD方法对共轴刚性旋翼流场特性进行了计算分析,重点研究了双旋翼悬停干扰以及旋翼和机身相互干扰情[19,20,21]。综上,国内外针对共轴刚性旋翼气动干扰特性的试验研究仍然较少,同时国内建立的一些共轴刚性旋翼气动特性数值计算方法缺乏相关的试验数据进行试验验证。

    鉴于此,本文采用4 m直径共轴刚性旋翼模型,开展了共轴刚性旋翼气动干扰特性风洞试验研究,分别测量了双旋翼状态下的上下旋翼气动力以及相同操纵输入下的孤立单旋翼状态气动力试验数据,对比分析了两种状态的气动力结果,获得了一些结论。

  • 1 试验设备及方法

  • 1.1 试验设备及模型

    试验在中国空气动力研究与发展中心的8 m×6 m直流式风洞进行,风洞中最大风速70 m/s。试验模型采用4 m直径共轴刚性旋翼缩比模型,上旋翼俯视逆时针旋转,下旋翼俯视顺时针旋转。旋翼桨叶剖面采用OA3系列翼型,桨叶扭转采用先正扭转后负扭转的扭转方案。旋翼模型桨毂无挥舞铰和摆振铰,额定转速下旋翼一阶挥舞频率比约为1.54。旋翼模型的主要参数如表1所示。

    表1 模型旋翼主要参数

    Tab.1 General characteristics of model rotor

    PropertyValue
    Rotor radius/m2
    RPM778
    Velocity of blade tip/(m·s-1)163
    Number of blades for dual rotors8
    Precone (do)3
    Distance between dual rotors/R0.15
    Solidity for dual rotors0.175
    Rotor first flap frequency/Ω1.54

    试验台为共轴反转形式,如图1所示。试验台主要由双旋翼传动系统、动力系统、操纵系统及天平测力系统组成,试验台额定转速778 r/min,最大输出功率180 kW。其中上旋翼转轴位于下旋翼转轴内部,通过齿轮传动系统保证上下旋翼的同步反向旋转。采用伺服液压系统精确控制旋翼轴倾角。试验台安装整流罩减小对风洞流场的干扰,同时在试验台关键位置安装振动传感器进行全程振动载荷的监控。试验台的上下旋翼具有独立的天平测试系统,可实现上下旋翼气动力的分开测试。

    图1
                            共轴旋翼试验台

    图1 共轴旋翼试验台

    Fig.1 Coaxial rotor test device

  • 1.2 试验方法

    双旋翼试验状态包括悬停和不同速度前飞,试验前进行空桨毂状态测力,旋翼试验数据需扣除空桨毂状态的气动力。在孤立单旋翼试验中,上下旋翼直接采用双旋翼状态对应的操纵输入。

    双旋翼悬停试验包括扭矩配平和不配平两种状态,扭矩配平试验中通过差动总距配平双旋翼扭矩为0。前飞试验中前进比变化范围为0.1~0.5,轴倾角变化范围-6°~2°,受风洞风速限制,通过降低旋翼转速(60%额定转速)实现前进比0.4以上试验状态。在前飞试验中,差动总距和差动纵向周期变距设置为0,通过总距、纵/横向周期变距实现旋翼的配平,其中垂向力系数配平至0.025 2,俯仰和滚转力矩配平至0,通过差动横向周期变距控制旋翼升力偏置。

    升力偏置LOS和垂向力系数CW定义分别为

    LOS=Mx/(FzR)
    (1)
    CW=W/0.5ρVtip2πR2
    (2)

    式中:W表示旋翼垂向力;Vtip表示旋翼桨尖速度;R为旋翼半径;Mx表示旋翼滚转力矩;Fz表示旋翼拉力。

    总距、差动总距、纵向周期变距、差动纵向周期变距、横向周期变距以及差动横向周期变距的定义分别为

    θ0.7=(θ0.7UR+θ0.7LR)/2
    (3)
    Δθ0.7=(θ0.7UR-θ0.7LR)/2
    (4)
    θ1s=(θ1sUR+θ1sLR)/2
    (5)
    Δθ1s=(θ1sUR-θ1sLR)/2
    (6)
    θ1c=(θ1cUR-θ1cLR)/2
    (7)
    Δθ1c=(θ1cUR+θ1cLR)/2
    (8)

    式中下标UR和LR分别表示上旋翼和下旋翼。

    上下旋翼桨距的变化规律为

    θUR=θ0.7UR+θ1cURcos(φ+Γ)+θ1sURsin(φ+Γ)
    (9)
    θLR=θ0.7LR+θ1cLRcos(φ+Γ)+θ1sLRsin(φ+Γ)
    (10)

    式中Γ为提前操纵角,试验中设置为30°。

  • 2 试验结果分析

    本节给出了悬停和前飞状态双旋翼气动干扰对上下旋翼气动力的影响情况,并分析了气动干扰对共轴刚性旋翼升力偏置特性的影响。

  • 2.1 悬停状态双旋翼干扰对气动力影响

    对悬停状态共轴刚性旋翼气动力分配情况以及双旋翼和孤立单旋翼气动力的对比情况进行了分析。图2给出了共轴刚性旋翼悬停状态拉力分配情况,从图中可以看出,上旋翼拉力占比大于下旋翼,且在扭矩不配平状态更为明显,在扭矩配平状态上旋翼拉力占总拉力的55%左右。图3给出了悬停双旋翼扭矩配平状态的上下旋翼拉力系数相对于单旋翼拉力系数的变化情况(图3中旋翼拉力系数对CTref标准化处理),从图中可以看出上下旋翼的拉力系数均明显小于孤立单旋翼状态。

    图2
                            悬停状态双旋翼拉力分配

    图2 悬停状态双旋翼拉力分配

    Fig.2 Thrust distribution of coaxial rotor in hover

    图3
                            悬停状态双旋翼拉力系数与单旋翼对比

    图3 悬停状态双旋翼拉力系数与单旋翼对比

    Fig.3 Thrust coefficients of coaxial and single rotor in hover

    以上结果说明,共轴刚性旋翼的上下旋翼之间存在着相互的气动干扰,造成旋翼拉力下降,且上旋翼对下旋翼的干扰更强,这和常规共轴旋翼干扰特性一[17]。造成以上干扰现象的原因主要是,双旋翼的桨尖涡尾迹对上下旋翼共同作用产生向下的诱导速度,这减小了桨叶剖面有效迎角,造成拉力下降,下旋翼工作在上旋翼的尾迹之内,诱导速度相对上旋翼更大,因而拉力更小;对于孤立单旋翼,桨叶诱导速度由单个旋翼产生,诱导速度小于双旋翼状态,因而双旋翼上下旋翼的拉力均小于孤立单旋翼状态。

    4给出了悬停双旋翼扭矩配平状态上下旋翼功率系数(图中旋翼功率系数对CQref标准化处理)与孤立单旋翼状态功率系数的对比。从中看出,相同的拉力系数情况下孤立单旋翼状态消耗功率最小,双旋翼中的上旋翼消耗功率有所增加,而下旋翼功率消耗最大。这是因为对于悬停状态,拉力系数相同时桨叶有效迎角基本一致,而3种旋翼状态的诱导速度并不相同,双旋翼的下旋翼诱导速度最大,造成更多的诱导功率消耗,因而功率最大。这也和图2中扭矩配平状态上旋翼拉力占比更大的现象相一致。

    图4
                            悬停状态双旋翼功率系数与单旋翼对比

    图4 悬停状态双旋翼功率系数与单旋翼对比

    Fig.4 Power coefficients of coaxial and single rotor in hover

  • 2.2 前飞状态双旋翼干扰对气动力影响

    主要进行了不同前进比水平飞行时双旋翼与孤立单旋翼状态拉力和功率的对比,分析了双旋翼干扰对气动力影响以及气功干扰随前飞速度的变化特点。同时采用自由尾迹方法计算获得了不同前进比状态的旋翼尾迹特点,分析了旋翼尾迹对气动干扰特性的内在影响。

    5给出了不同前进比水平飞行时双旋翼拉力以及和孤立单旋翼的对比情况,由于双旋翼试验中上下旋翼的横向变距操纵并不一致,因而孤立上旋翼和孤立下旋翼的气动力并不一致。从图5中可以看出,小前进比情况和悬停状态相似,上下旋翼拉力均小于单旋翼状态,且下旋翼拉力下降更大;随着前进比的增加,上下旋翼气动力均逐渐趋近孤立单旋翼状态,且上旋翼更快达到单旋翼水平,在前进比0.4时上旋翼拉力和单旋翼基本一致。

    图5
                            前飞状态双旋翼拉力系数和单旋翼对比(轴倾角-2°)

    图5 前飞状态双旋翼拉力系数和单旋翼对比(轴倾角-2°)

    Fig.5 Thrust coefficients of coaxial and single rotor in forward flight(Pith angle=-2°)

    6给出了不同前进比水平飞行时双旋翼上下旋翼功率和孤立单旋翼的对比情况。在图6中,双旋翼状态和孤立单旋翼状态的功率差距并不显著,这是因为在相同操纵量下,虽然气动干扰增加了诱导功率,但同时也降低了桨叶剖面的有效迎角,造成旋翼型阻功率的下降,因而总体上双旋翼的上下旋翼和孤立单旋翼状态功率相差不大。

    图6
                            前飞状态双旋翼功率系数和单旋翼对比(轴倾角-2°)

    图6 前飞状态双旋翼功率系数和单旋翼对比(轴倾角-2°)

    Fig.6 Power coefficients of coaxial and single rotor in forward flight(Pith angle=-2°)

    5和图6中拉力和功率的变化情况表明,随着前进比的增加,双旋翼之前的气动干扰情况逐渐减弱,上旋翼的气动力更快趋近与单旋翼状态。

    为更加清楚地分析共轴刚性旋翼上下旋翼的气动干扰特性,本文还采用直升机综合分析平台Camrad II[22]进行了自由尾迹计算。图7给出了计算获得的旋翼桨尖涡尾迹情况。双旋翼尾迹对上下旋翼的诱导速度影响是双旋翼之间相互干扰的主要原因。从图7中可以看出前飞状态下旋翼桨尖涡随来流向后运动,前进比越大尾迹向后运动距离更远,对旋翼桨盘平面的诱导作用越来越小,这造成了随着前进比增加双旋翼之间气动干扰逐渐减弱的现象。

    图7
                            双旋翼桨尖涡尾迹计算对比

    图7 双旋翼桨尖涡尾迹计算对比

    Fig.7 Tip vortex wake of coaxial rotor in different advance ratio

  • 2.3 气动干扰对升力偏置特性影响

    升力偏置是共轴刚性旋翼的基本特点,对旋翼的性能和载荷特性具有重要影响。图8选取了前进比0.2和0.3两个状态,对比了不同轴倾角状态下双旋翼升力偏置相对与孤立单旋翼状态的变化情况(图中升力偏置对LOSref进行标准化处理)。从图中可以看出,对于不同前进比和轴倾角状态,双旋翼中上下旋翼的升力偏置均大于孤立单旋翼,且随着升力偏置的增大这种增大现象更为明显。

    html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F008.jpg
    html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F009.jpg

    图8 双旋翼升力偏置与单旋翼状态对比

    Fig.8 Coaxial rotor and single rotor lift offset

    这是因为,共轴刚性旋翼存在升力偏置,旋翼在前行侧诱导速度更大,这使得双旋翼中存在着非对称气动干扰,由于上旋翼前/后行侧和下旋翼的后/前行侧桨叶相互对应,因而前行侧受到的气动干扰要小于后行侧,这造成后行侧升力减小更大,进而增加了升力偏置。图9给出了自由尾迹方法计算获得的双旋翼和单旋翼诱导速度对比(图9中诱导速度对Vinref进行标准化处理,向下为正),从中可以看出双旋翼诱导速度相对于单旋翼的增量在前行侧明显小于后行侧,这和上述的分析一致。

    图9
                            双旋翼与单旋翼诱导速度计算对比

    图9 双旋翼与单旋翼诱导速度计算对比

    Fig.9 Induced velocity of coaxial and single rotor

  • 3 结论

    本文采用4 m直径共轴刚性旋翼模型,开展了共轴刚性旋翼气动干扰特性风洞试验研究,获得的主要结论如下:

    (1)悬停状态时,与孤立单旋翼相比,气动干扰会使得共轴刚性旋翼上下旋翼在相同总距状态拉力下降,在相同拉力状态下功率消耗上升,且上旋翼对下旋翼的气动干扰更为严重。

    (2)前飞状态时,随着前进比的增加,共轴刚性旋翼上下旋翼之间的气动干扰逐渐减弱,上旋翼的气动力更快趋近于单旋翼状态。

    (3)由于共轴刚性旋翼上下旋翼之间存在非对称干扰,相同操纵输入时上下旋翼的升力偏置均大于孤立单旋翼状态。随着共轴刚性旋翼升力偏置的增大,上下旋翼的非对称干扰更为严重。

  • 参考文献

    • 1

      BURGESS R K. Development of the ABC rotor[C]//The 27th Annual National V/STOL Forum of the American Helicopter Society. Washington, D C: AHS, 1971: 1⁃16.

    • 2

      SCHMAUS J, CHOPRA I. Performance and loads prediction for a high advance ratio coaxial helicopter[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2015: 1⁃17.

    • 3

      LORBER P, BOWLES P. Wind tunnel testing for the SB1 defiantTM joint multi⁃role technology demon⁃strator[C]//American Helicopter Society 73rd Ann⁃ual Forum. Texas: AHS, 2017: 1⁃18.

    • 4

      YEO H, JOHNSON W. Investigation of maximum blade loading capability of lift⁃offset rotors[C]//Amer⁃ican Helicopter Society 69th Annual Forum. Phoenix: AHS, 2013: 1⁃16.

    • 5

      SCHMAUS J, CHOPRA I. Aeromechanics for a high advance ratio coaxial helicopter[C]//American Helicopter Society 71st Annual Forum. Virginia: AHS, 2015: 1⁃15.

    • 6

      PAGLINO V M, BENO E A. Full⁃scale wind⁃tunnel investigation of the advancing blade concept rotor system[R]. USAAMRDL Technical Report, 1971:71⁃25.

    • 7

      VINCENT M. Forward flight performance of a coaxial rigid rotor[C]//The 27th Annual National V/STOL Forum of the American Helicopter Society. Washington, DC: AHS, 1971: 1⁃15.

    • 8

      FELKER F F. Performance and loads data from a wind tunnel test of a full⁃scale coaxial hingeless rotor helicopter[R]. NASA⁃TM⁃81329, 1981.

    • 9

      WALSH D. WEINER S. Development testing of the sikorsky X2 technology demonstrator[C]//American Helicopter Society 65th Annual Forum. Grapevine: AHS, 2009: 1⁃11.

    • 10

      LORBER P, LAW G. Overview of S⁃97 RAIDER(TM) scale model tests[C]//American Helicopter Society 72nd Annual Forum. West Palm Beach: AHS, 2016: 1⁃17.

    • 11

      MCALISTER K. Experimental study of a hovering coaxial rotor with highly twisted blades[C]//Ame⁃rican Helicopter Society 64th Annual Forum. Montreal Canada: AHS, 2008: 1⁃17.

    • 12

      CAMERON C, KARPATNE A, SIROHI J. Performance and vibratory hub loads of a mach⁃scale coaxial rotor in hover[C]//American Helicopter Soci⁃ety 70th Annual Forum. Montreal Canada: AHS, 2014: 1⁃9.

    • 13

      SINGH R, KANG H. Computational investigations of transient loads and blade deformations on coaxial rotor systems[C]//The 33rd AIAA Applied Aerody⁃namics Conference. Dallas: AIAA, 2015: 1⁃11.

    • 14

      CAMERON C, SIROHI J, UEHARA D. Transient hub loads and blade deformation of a mach⁃scale coa⁃xial rotor in hover[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2015: 1‑11.

    • 15

      CAMERON C, SIROHI J. Performance and loads of a model coaxial rotor part I: Wind tunnel testing[C]//American Helicopter Society 72nd Annual Forum. West Palm Beach: AHS, 2016: 1⁃15.

    • 16

      FEIL R, RAULEDER J. Aeromechanics analysis of a coaxial rotor system in hover and high⁃advance⁃ratio forward flight[C]//The AIAA Applied Aerody⁃namics Conference. Washington: AIAA, 2016: 1⁃19.

    • 17

      邓彦敏, 陶然, 胡继忠. 共轴式直升机上下旋翼之间气动干扰的风洞实验研究[J]. 航空学报, 2003, 24(1): 10⁃14.

      DENG Yanmin, TAO Ran, HU Jizhong. Experimental investigation of the aerodynamic interaction between upper and lower rotors of a coaxial helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 10⁃14.

    • 18

      马杨超, 于世美, 邓彦敏. 共轴式双旋翼悬停诱导速度场的PIV试验研究[J]. 实验流体力学, 2012, 26(1): 16⁃20.

      MA Yangchao, YU Shimei, DENG Yanmin. PIV experimental investigation of coaxial rotor induced velocity field in hover[J]. Journal of Experimental in Fluid Mechanics, 2012, 26(1): 16⁃20.

    • 19

      叶靓, 徐国华. 共轴式双旋翼悬停流场和气动力的CFD计算[J].空气动力学学报, 2012, 30(4):437⁃442.

      YEI Liang, XU Guohua. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J].Acta Aerodynamica Sinica, 2012, 30(4):437⁃442.

    • 20

      李文浩. 复合式高速直升机旋翼/机身气动干扰特性的CFD分析[D]. 南京:南京航空航天大学, 2012.

      LI Wenhao. Analysis on aerodynamic interactions of the compound high⁃speed helicopter rotor/fuselage ba⁃sed on CFD[D]. Nanjing: Nanjing University of Aer⁃onautics and Astronautics, 2012.

    • 21

      张银. 复合式共轴刚性旋翼直升机气动干扰及飞行特性分析[D]. 南京:南京航空航天大学, 2014.

      ZHANG Yin. Research on aerodynamic interaction and flight characteristics of compound helicopter with rigid coaxial rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.

    • 22

      JOHNSON W. A general free wake geometry calculation for wings and rotors[C]//American Heli⁃copter Society 72nd Annual Forum. Texas: AHS, 2014: 1⁃17.

  • 贡献声明和致谢

    本次试验过程中,中国空气动力学研究中心的彭先敏、章贵川、何龙、田斌等研究人员给予了大力的支持和帮助,在此予以感谢。

袁明川

机 构:中国直升机设计研究所直升机旋翼动力学重点实验室, 景德镇, 333001

Affiliation:Science and Technology on Rotorcraft Aeromechanics Laboratory, China Helicopter Research and Development Institute, Jingdezhen, 333001, China

角 色:通讯作者

Role:Corresponding author

邮 箱:ymc18807742@avic.com

作者简介:袁明川,男,工程师,E⁃mail:ymc18807742@avic.com。

刘平安

机 构:中国直升机设计研究所直升机旋翼动力学重点实验室, 景德镇, 333001

Affiliation:Science and Technology on Rotorcraft Aeromechanics Laboratory, China Helicopter Research and Development Institute, Jingdezhen, 333001, China

樊枫

机 构:中国直升机设计研究所直升机旋翼动力学重点实验室, 景德镇, 333001

Affiliation:Science and Technology on Rotorcraft Aeromechanics Laboratory, China Helicopter Research and Development Institute, Jingdezhen, 333001, China

江露生

机 构:中国直升机设计研究所直升机旋翼动力学重点实验室, 景德镇, 333001

Affiliation:Science and Technology on Rotorcraft Aeromechanics Laboratory, China Helicopter Research and Development Institute, Jingdezhen, 333001, China

林永峰

机 构:中国直升机设计研究所直升机旋翼动力学重点实验室, 景德镇, 333001

Affiliation:Science and Technology on Rotorcraft Aeromechanics Laboratory, China Helicopter Research and Development Institute, Jingdezhen, 333001, China

刘彦东

角 色:中文编辑

Role:Editor

PropertyValue
Rotor radius/m2
RPM778
Velocity of blade tip/(m·s-1)163
Number of blades for dual rotors8
Precone (do)3
Distance between dual rotors/R0.15
Solidity for dual rotors0.175
Rotor first flap frequency/Ω1.54
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F001.jpg
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F002.jpg
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F003.jpg
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F004.jpg
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F005.jpg
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F006.jpg
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F007.jpg
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F008.jpg
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F009.jpg
html/njhkht/201902019/alternativeImage/7ab731ee-60dc-4f1b-9bbc-1125a1fb5235-F010.jpg

表1 模型旋翼主要参数

Tab.1 General characteristics of model rotor

图1 共轴旋翼试验台

Fig.1 Coaxial rotor test device

图2 悬停状态双旋翼拉力分配

Fig.2 Thrust distribution of coaxial rotor in hover

图3 悬停状态双旋翼拉力系数与单旋翼对比

Fig.3 Thrust coefficients of coaxial and single rotor in hover

图4 悬停状态双旋翼功率系数与单旋翼对比

Fig.4 Power coefficients of coaxial and single rotor in hover

图5 前飞状态双旋翼拉力系数和单旋翼对比(轴倾角-2°)

Fig.5 Thrust coefficients of coaxial and single rotor in forward flight(Pith angle=-2°)

图6 前飞状态双旋翼功率系数和单旋翼对比(轴倾角-2°)

Fig.6 Power coefficients of coaxial and single rotor in forward flight(Pith angle=-2°)

图7 双旋翼桨尖涡尾迹计算对比

Fig.7 Tip vortex wake of coaxial rotor in different advance ratio

图8 双旋翼升力偏置与单旋翼状态对比

Fig.8 Coaxial rotor and single rotor lift offset

图8 双旋翼升力偏置与单旋翼状态对比

Fig.8 Coaxial rotor and single rotor lift offset

图9 双旋翼与单旋翼诱导速度计算对比

Fig.9 Induced velocity of coaxial and single rotor

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      BURGESS R K. Development of the ABC rotor[C]//The 27th Annual National V/STOL Forum of the American Helicopter Society. Washington, D C: AHS, 1971: 1⁃16.

    • 2

      SCHMAUS J, CHOPRA I. Performance and loads prediction for a high advance ratio coaxial helicopter[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2015: 1⁃17.

    • 3

      LORBER P, BOWLES P. Wind tunnel testing for the SB1 defiantTM joint multi⁃role technology demon⁃strator[C]//American Helicopter Society 73rd Ann⁃ual Forum. Texas: AHS, 2017: 1⁃18.

    • 4

      YEO H, JOHNSON W. Investigation of maximum blade loading capability of lift⁃offset rotors[C]//Amer⁃ican Helicopter Society 69th Annual Forum. Phoenix: AHS, 2013: 1⁃16.

    • 5

      SCHMAUS J, CHOPRA I. Aeromechanics for a high advance ratio coaxial helicopter[C]//American Helicopter Society 71st Annual Forum. Virginia: AHS, 2015: 1⁃15.

    • 6

      PAGLINO V M, BENO E A. Full⁃scale wind⁃tunnel investigation of the advancing blade concept rotor system[R]. USAAMRDL Technical Report, 1971:71⁃25.

    • 7

      VINCENT M. Forward flight performance of a coaxial rigid rotor[C]//The 27th Annual National V/STOL Forum of the American Helicopter Society. Washington, DC: AHS, 1971: 1⁃15.

    • 8

      FELKER F F. Performance and loads data from a wind tunnel test of a full⁃scale coaxial hingeless rotor helicopter[R]. NASA⁃TM⁃81329, 1981.

    • 9

      WALSH D. WEINER S. Development testing of the sikorsky X2 technology demonstrator[C]//American Helicopter Society 65th Annual Forum. Grapevine: AHS, 2009: 1⁃11.

    • 10

      LORBER P, LAW G. Overview of S⁃97 RAIDER(TM) scale model tests[C]//American Helicopter Society 72nd Annual Forum. West Palm Beach: AHS, 2016: 1⁃17.

    • 11

      MCALISTER K. Experimental study of a hovering coaxial rotor with highly twisted blades[C]//Ame⁃rican Helicopter Society 64th Annual Forum. Montreal Canada: AHS, 2008: 1⁃17.

    • 12

      CAMERON C, KARPATNE A, SIROHI J. Performance and vibratory hub loads of a mach⁃scale coaxial rotor in hover[C]//American Helicopter Soci⁃ety 70th Annual Forum. Montreal Canada: AHS, 2014: 1⁃9.

    • 13

      SINGH R, KANG H. Computational investigations of transient loads and blade deformations on coaxial rotor systems[C]//The 33rd AIAA Applied Aerody⁃namics Conference. Dallas: AIAA, 2015: 1⁃11.

    • 14

      CAMERON C, SIROHI J, UEHARA D. Transient hub loads and blade deformation of a mach⁃scale coa⁃xial rotor in hover[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2015: 1‑11.

    • 15

      CAMERON C, SIROHI J. Performance and loads of a model coaxial rotor part I: Wind tunnel testing[C]//American Helicopter Society 72nd Annual Forum. West Palm Beach: AHS, 2016: 1⁃15.

    • 16

      FEIL R, RAULEDER J. Aeromechanics analysis of a coaxial rotor system in hover and high⁃advance⁃ratio forward flight[C]//The AIAA Applied Aerody⁃namics Conference. Washington: AIAA, 2016: 1⁃19.

    • 17

      邓彦敏, 陶然, 胡继忠. 共轴式直升机上下旋翼之间气动干扰的风洞实验研究[J]. 航空学报, 2003, 24(1): 10⁃14.

      DENG Yanmin, TAO Ran, HU Jizhong. Experimental investigation of the aerodynamic interaction between upper and lower rotors of a coaxial helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 10⁃14.

    • 18

      马杨超, 于世美, 邓彦敏. 共轴式双旋翼悬停诱导速度场的PIV试验研究[J]. 实验流体力学, 2012, 26(1): 16⁃20.

      MA Yangchao, YU Shimei, DENG Yanmin. PIV experimental investigation of coaxial rotor induced velocity field in hover[J]. Journal of Experimental in Fluid Mechanics, 2012, 26(1): 16⁃20.

    • 19

      叶靓, 徐国华. 共轴式双旋翼悬停流场和气动力的CFD计算[J].空气动力学学报, 2012, 30(4):437⁃442.

      YEI Liang, XU Guohua. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J].Acta Aerodynamica Sinica, 2012, 30(4):437⁃442.

    • 20

      李文浩. 复合式高速直升机旋翼/机身气动干扰特性的CFD分析[D]. 南京:南京航空航天大学, 2012.

      LI Wenhao. Analysis on aerodynamic interactions of the compound high⁃speed helicopter rotor/fuselage ba⁃sed on CFD[D]. Nanjing: Nanjing University of Aer⁃onautics and Astronautics, 2012.

    • 21

      张银. 复合式共轴刚性旋翼直升机气动干扰及飞行特性分析[D]. 南京:南京航空航天大学, 2014.

      ZHANG Yin. Research on aerodynamic interaction and flight characteristics of compound helicopter with rigid coaxial rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.

    • 22

      JOHNSON W. A general free wake geometry calculation for wings and rotors[C]//American Heli⁃copter Society 72nd Annual Forum. Texas: AHS, 2014: 1⁃17.

  • 您是第位访问者
    网站版权 © 南京航空航天大学学报
    技术支持:北京勤云科技发展有限公司