en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
LEISHMANJ G. Principles of helicopter aerody⁃namics[M]. U.K.: Cambridge University Press, 2006.
参考文献 2
JAMESS. Experimental investigation of rotor vortex wakes in descent[C]//42nd AIAA Aerospace Scienc⁃es Meeting and Exhibit. Reno USA: AIAA, 2004: 297⁃307.
参考文献 3
GREENR B, GILLIESE A, BROWNR E. The flow field around a rotor in axial descent[J]. Journal of Fluid Mechanics, 2005, 534: 237⁃261.
参考文献 4
LANDGREBEA J. The wake geometry of a hovering helicopter and its influence on rotor performance [J]. Journal of the American Helicopter Society, 1972,17(4): 3⁃15.
参考文献 5
杨永东, 武杰. 悬停旋翼桨尖涡的试验研究[J]. 实验流体力学, 2008, 22(3): 36⁃39.
YANGYongdong, WUJie. Investigation of hovering rotor tip vortex[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 36⁃39.
参考文献 6
袁红刚, 李进学, 杨永东,等. 前飞状态旋翼尾迹测量试验研究[J]. 实验流体力学, 2010, 24(4): 29⁃32.
YUANHonggang, LIJinxue, YANGYongdong, et al. Test investigation of measuring wake geometry for helicopter rotors in forward flight[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 29⁃32.
参考文献 7
刘平安, 林永峰, 陈垚峰,等. 旋翼悬停状态桨尖涡测量方法研究[J]. 实验流体力学, 2017, 31(4): 39⁃44.
LIU Ping’an, LINYongfeng, CHENYaofeng, et al. Blade tip vortex measurements of a hovering rotor [J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 39⁃44.
参考文献 8
李春华, 曹金华, 吴裕平. 直升机旋翼流场特性PIV试验分析[J]. 直升机技术, 2012(1): 6⁃10.
LIChunhua, CAOJinhua, WUYuping. PIV experimental investigation on flow field for helicopter rotor [J]. Helicopter Technique, 2012(1): 6⁃10.
参考文献 9
黄水林, 林永峰, 黄建萍,等. 基于PIV技术的纵列式双旋翼尾迹特性实验研究[J]. 空气动力学学报, 2012, 30(3): 334⁃339.
HUANGShuilin, LINYongfeng, HUANGJianping, et al. Experimental investigation on the wake characteristics of tandem twin rotors[J]. Acta Aerodynamica Sinica, 2012, 30(3): 334⁃339.
参考文献 10
BURGESSR K. The ABCTM rotor—A historical perspective[C]//The 60th Annual Forum of the Ame⁃rican Helicopter Scoiety, International. Baltimore, USA: [s.n.], 2004.
参考文献 11
PAGLINOV M,BENOE A. Full⁃scale wind tunnel investigation of the advancing blade concept rotor system: AD 734338[R]. Fort Eustis, USA: USAAVLABS, 1971.
参考文献 12
FELKERF F. Performance and loads data from a wind tunnel test of a full⁃scale, coaxial, hingeless rotor helicopter:NASA/TM⁃81329[R].USA:NASA, 1981.
参考文献 13
LORBERP, LAW G, O'NEILLJ, et al. Overview of S⁃97 RAIDER scale model tests[C]//The AHS 72th Annual Forum.West Palm Beach, USA: [s.n.], 2016.
参考文献 14
于世美, 邓彦敏. 共轴式双旋翼悬停流场的水洞PIV测量[J]. 航空动力学报, 2007, 22(11): 1852⁃1857.
YUShimei, DENGYanmin. PIV measurement of water tunnel for the flow field of a hovering coaxial rotor[J]. Journal of Aerospace Power, 2007, 22(11): 1852⁃1857.
参考文献 15
马杨超, 于世美, 邓彦敏. 共轴式双旋翼悬停诱导速度场的PIV实验研究[J]. 实验流体力学, 2012, 26(1): 16⁃20.
YangchaoMA, YUShimei, DENGYanmin. PIV experimental investigation of coaxial rotor's induced velocity field in hover [J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 16⁃20.
参考文献 16
唐正飞, 高正. 共轴双旋翼与单旋翼悬停流场实验测量值的对比[J]. 南京航空航天大学学报, 1997, 29(6): 627⁃632.
TANGZhengfei, GAOZheng. Comparison of experimental data for the coaxial rotor and single rotor flowfield in hovering[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(6): 627⁃632.
目录 contents

    摘要

    使用粒子图像测速(Particle image velocity, PIV)技术对2 m直径共轴刚性旋翼悬停流场进行了风洞试验研究。在所搭建的共轴刚性旋翼试验台上,对1 100 r/min和1 860 r/min两种转速,8°和10°两种总距下的共轴刚性旋翼流场进行了测量,并测量了单独上旋翼相同状态下的流场。通过对试验数据进行处理,得到了不同状态下桨尖涡的脱落轨迹以及流场速度矢量图。同时通过对比分析,研究了共轴刚性旋翼之间的气动干扰现象,并指出了上旋翼桨尖涡尾迹通过下旋翼桨盘时的“二次收缩”效应。

    Abstract

    The flowfield of ø2 m rigid coaxial rotor in hovering state were measured in wind tunnel based on particle image velocity (PIV) technique. The test condition with rotational speeds of 1 100 r/min and 1 860 r/min, collective pitches of 8° and 10° were measured on the test rigid coaxial rotor stand. Meanwhile, the isolate upper rotor under the same condition were measured for comparison. The trajectory of tip vortex and the distribution of velocity vector were obtained. Furthermore, the aerodynamic interaction between the upper rotor and the lower rotor were investigated, and the "secondary contraction effect" of the vortex wake of the upper rotor was observed when it passed through the disk of the lower rotor.

    旋翼尾迹的产生及运动对其气动特性及整体性能有着重要的影[1,2,3],对旋翼尾迹开展准确的试验测量研究,有助于增进对悬停尾迹不稳定性、前飞桨⁃涡干扰等现象的认识,同时为数值模拟计算提供对比参考。

    国内外已经对常规单旋翼的尾迹进行了不少试验研究。Landgrebe[4]最早对旋翼悬停尾迹进行了测量。杨永东[5]使用单片桨叶在试验台上开展了悬停状态桨尖涡试验,通过测量不同转速和总距条件桨尖周围及近尾迹局部区域的流场,揭示了桨尖涡的形成和发展过程。袁红刚[6]则进行了单旋翼前飞尾迹测量研究,得到了不同风速及拉力系数对桨尖涡运动轨迹的影响。刘平安、李春华[7,8]也开展了类似的试验研究。而有关双旋翼尾迹的相关研究则进行得相对较少,黄水林[9]通过改变纵列式双旋翼之间的水平和轴向间距,分析了桨尖涡的位移情况。当前,高速直升机已经成为一大研究热点,而共轴刚性旋[10,11,12,13]是实现直升机高速前飞的重要方式,于世美、马杨超[14,15]进行了ø0.5 m的缩比共轴刚性旋翼模型的水洞试验。唐正飞[16]测量了共轴刚性旋翼的诱导速度,并与单旋翼的结果进行了对比,但并未给出旋翼尾迹的试验结果。

    本文基于发展已经较为成熟的PIV技术对ø2 m共轴刚性旋翼悬停及前飞流场进行了风洞试验测量,研究了两种不同转速条件下旋翼尾迹的特性,本文的研究结果可为共轴刚性旋翼直升机的设计提供一定的支持。

  • 1 试验设备及方法

  • 1.1 风洞与试验设备

    试验在中国空气动力研究与发展中心ø3.2 m低速风洞中进行,该风洞是一座开、闭口试验段两用的回流式风洞,试验段横截面为圆形。本文相关试验在开口试验段中进行。

    PIV测量的支撑平台、粒子发生器及粒子扩散装置安装在风洞稳定段内。PIV系统由照明激光器、同步控制器和高速CCD相机等组成,该系统可测量平面内任意方向的速度矢量,空间分辨率最小可达50 μm,测速精度为1%。图1给出了其工作结构图。激光照在上下旋翼桨叶交会处,采用乙二醇/丙二醇粒子制备方案,试验照片如图2所示。

    图1
                            二维PIV系统工作结构图

    图1 二维PIV系统工作结构图

    Fig.1 Schematic of 2D PIV system

    图2
                            共轴刚性旋翼流场试验照片

    图2 共轴刚性旋翼流场试验照片

    Fig.2 Picture of flowfield test of rigid coaxial rotor

    共轴刚性旋翼试验台(简称试验台,见图3)包含台架系统、动力系统、测量系统、操纵控制系统、主轴倾斜系统,可完成2 m直径量级共轴刚性旋翼模型的悬停和前飞风洞试验,试验台的总距操纵范围为-5°~20°,周期变距范围为-15°~15°。旋翼安装在ø2 m共轴刚性旋翼模型试验台上,上下旋翼间距为0.17R,均只有变距铰,无摆振铰和挥舞铰。每副旋翼各有四片桨叶,上旋翼逆时针旋转,下旋翼顺时针旋转。桨叶外形如图4所示,其存在12°的线性负扭转,桨叶弦长为0.07 m。

    图3
                            ø2 m共轴刚性旋翼模型试验台

    图3 ø2 m共轴刚性旋翼模型试验台

    Fig.3 Test stand of ø2 m rigid coaxial rotor

    图4
                            共轴刚性旋翼试验桨叶外形

    图4 共轴刚性旋翼试验桨叶外形

    Fig.4 Geometry shape of rigid coaxial rotor blade

  • 1.2 试验状态与方法

    试验旋翼转速为1 100 r/min和1 860 r/min(对应桨尖马赫数分别为0.339和0.573),悬停试验中的总距以上旋翼为基准,通过总距差动配平至双旋翼扭矩为零,试验的上旋翼总距角8°和10°,PIV测量区域如图5所示,测量范围为双旋翼桨尖附近600 mm×600 mm的区域。在进行试验时,首先启动试验台,使旋翼转速升到工作转速,通过操纵变距拉杆使旋翼总距达到指定值。然后调整粒子播撒位置,使粒子均匀充满测量区域,调整移测架,使得激光器及摄像头移至测量区域,完成此区域的PIV流场测量,再重新调整移测架,使得激光器及摄像头移至下一区域进行测量。完成试验后,关闭粒子发生器,试验台停车。

    图5
                            PIV流场测量区域示意图

    图5 PIV流场测量区域示意图

    Fig.5 Schematic of PIV flowfield measuring zone

  • 2 试验结果及分析

  • 2.1 单旋翼悬停试验结果

    6给出了单独上旋翼悬停试验典型的瞬时烟流照片,从图中可以清晰地看出桨尖涡的形态和运动轨迹,螺旋状的桨尖涡层次分明,向下运动的同时逐渐向桨盘内侧收缩,形成明显的桨盘下洗流边界。

    图6
                            单旋翼悬停尾迹试验烟流瞬时照片

    图6 单旋翼悬停尾迹试验烟流瞬时照片

    Fig.6 Smoke flow picture of the single rotor in hover

    7,8分别为1 100 r/min和1 860 r/min转速下两种不同总距PIV试验测量得到的单独上旋翼旋转一周桨尖涡的平均情况。可以看出10°总距时桨尖涡的涡量比8°总距时更大,而1 860 r/min转速时的涡量又显著高于1 100 r/min时桨尖涡的涡量。

    图7
                            单旋翼1 100 r/min转速试验结果

    图7 单旋翼1 100 r/min转速试验结果

    Fig.7 PIV test result of the single rotor with 1 100 r/min

    图8
                            单旋翼1 860 r/min转速试验结果

    图8 单旋翼1 860 r/min转速试验结果

    Fig.8 PIV test result of the single rotor with 1 860 r/min

  • 2.2 共轴刚性旋翼悬停试验结果

    9给出了共轴刚性旋翼悬停尾迹试验典型的瞬时烟流照片,从图中可以清晰地看出上下旋翼生成的桨尖涡及其运动轨迹,对比上下旋翼桨尖涡的运动轨迹可以看出,上旋翼桨尖涡尾迹沿桨盘径向的收缩更为显著,这是由于下旋翼桨盘诱导速度场对其产生了“二次收缩”效应。

    图9
                            共轴刚性旋翼悬停尾迹试验烟流瞬时照片

    图9 共轴刚性旋翼悬停尾迹试验烟流瞬时照片

    Fig.9 Smoke flow picture of rigid coaxial rotor in hover

    10,11分别为1 100 r/min和1 860 r/min转速下两种不同总距PIV试验测量得到的共轴刚性旋翼旋转一周桨尖涡的平均情况。与单独上旋翼的试验结果类似,大总距、高转速下的桨尖涡涡量更强。

    图10
                            共轴刚性旋翼1 100 r/min转速试验结果

    图10 共轴刚性旋翼1 100 r/min转速试验结果

    Fig.10 PIV test result of rigid coaxial rotor with 1 100 r/min

    图11
                            共轴刚性旋翼1 860 r/min转速试验结果

    图11 共轴刚性旋翼1 860 r/min转速试验结果

    Fig.11 PIV test result of rigid coaxial rotor with 1 860 r/min

  • 2.3 单旋翼与共轴刚性旋翼的诱导速度场对比分析

    对比了孤立上旋翼与共轴刚性旋翼不同状态下的诱导速度矢量场,如图12,13,14,15所示。从图中可以清晰地看出桨盘附近不同区域处的速度分布情况,孤立上旋翼的下洗流诱导速度场分界明显,1 100 r/min转速下的桨盘下洗流速度在5~10 m/s之间,而1 860 r/min转速下的下洗流速度则超过了10 m/s。同时,在相同转速下,10°总距对应的下洗流诱导速度高于8°总距的结果。对比单旋翼的速度矢量场结果,可以发现双旋翼之间存在显著的气动干扰现象,下洗流边界不再明显,而桨盘中心区域下方的下洗流诱导速度由于双旋翼之间的气动干扰,反而小于单独上旋翼对应的结果。

    html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F012.jpg
    html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F013.jpg

    图12 单旋翼与共轴刚性旋翼诱导速度场的对比(1 100 r/min, 8°总距)

    Fig.12 Comparison of the induced flow between single rotor and rigid coaxial rotor (1 100 r/min, 8° collective pitch)

    图13
                            单旋翼与共轴刚性旋翼诱导速度场的对比(1 100 r/min, 10°总距)

    图13 单旋翼与共轴刚性旋翼诱导速度场的对比(1 100 r/min, 10°总距)

    Fig.13 Comparison of the induced flow between single rotor and rigid coaxial rotor (1 100 r/min, 10° collective pitch)

    图14
                            单旋翼与共轴刚性旋翼诱导速度场的对比(1 860 r/min, 8°总距)

    图14 单旋翼与共轴刚性旋翼诱导速度场的对比(1 860 r/min, 8°总距)

    Fig.14 Comparison of the induced flow between single rotor and rigid coaxial rotor (1 860 r/min, 8° collective pitch)

    图15
                            单旋翼与共轴刚性旋翼诱导速度场的对比(1 860 r/min, 10°总距)

    图15 单旋翼与共轴刚性旋翼诱导速度场的对比(1 860 r/min, 10°总距)

    Fig.15 Comparison of the induced flow between single rotor and rigid coaxial rotor (1 860 r/min, 10° collective pitch)

  • 3 结论

    通过对ø2 m共轴刚性旋翼悬停及前飞流场的PIV试验,以及与孤立上旋翼试验结果的对比,可得到如下结论:

    (1) 共轴刚性旋翼悬停时,上旋翼产生的桨尖涡在通过下旋翼桨盘后存在“二次收缩”效应,下旋翼诱导速度场会使得上旋翼桨尖涡进一步沿桨叶径向收缩。

    (2) 共轴刚性旋翼以10°总距悬停时,产生的桨尖涡强度比8°总距时更大,而相同总距时,1 860 r/min转速下产生的桨尖涡强度比1 100 r/min转速更大。

    (3)共轴刚性旋翼之间存在显著的干扰现象,旋翼下洗流诱导速度场不再存在明显的边界,桨盘中心区域下方的下洗流诱导速度小于单独上旋翼对应的诱导速度。

  • 参考文献

    • 1

      LEISHMAN J G. Principles of helicopter aerody⁃namics[M]. U.K.: Cambridge University Press, 2006.

    • 2

      JAMES S. Experimental investigation of rotor vortex wakes in descent[C]//42nd AIAA Aerospace Scienc⁃es Meeting and Exhibit. Reno USA: AIAA, 2004: 297⁃307.

    • 3

      GREEN R B, GILLIES E A, BROWN R E. The flow field around a rotor in axial descent[J]. Journal of Fluid Mechanics, 2005, 534: 237⁃261.

    • 4

      LANDGREBE A J. The wake geometry of a hovering helicopter and its influence on rotor performance [J]. Journal of the American Helicopter Society, 1972,17(4): 3⁃15.

    • 5

      杨永东, 武杰. 悬停旋翼桨尖涡的试验研究[J]. 实验流体力学, 2008, 22(3): 36⁃39.

      YANG Yongdong, WU Jie. Investigation of hovering rotor tip vortex[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 36⁃39.

    • 6

      袁红刚, 李进学, 杨永东,等. 前飞状态旋翼尾迹测量试验研究[J]. 实验流体力学, 2010, 24(4): 29⁃32.

      YUAN Honggang, LI Jinxue, YANG Yongdong, et al. Test investigation of measuring wake geometry for helicopter rotors in forward flight[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 29⁃32.

    • 7

      刘平安, 林永峰, 陈垚峰,等. 旋翼悬停状态桨尖涡测量方法研究[J]. 实验流体力学, 2017, 31(4): 39⁃44.

      LIU Ping’an, LIN Yongfeng, CHEN Yaofeng, et al. Blade tip vortex measurements of a hovering rotor [J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 39⁃44.

    • 8

      李春华, 曹金华, 吴裕平. 直升机旋翼流场特性PIV试验分析[J]. 直升机技术, 2012(1): 6⁃10.

      LI Chunhua, CAO Jinhua, WU Yuping. PIV experimental investigation on flow field for helicopter rotor [J]. Helicopter Technique, 2012(1): 6⁃10.

    • 9

      黄水林, 林永峰, 黄建萍,等. 基于PIV技术的纵列式双旋翼尾迹特性实验研究[J]. 空气动力学学报, 2012, 30(3): 334⁃339.

      HUANG Shuilin, LIN Yongfeng, HUANG Jianping, et al. Experimental investigation on the wake characteristics of tandem twin rotors[J]. Acta Aerodynamica Sinica, 2012, 30(3): 334⁃339.

    • 10

      BURGESS R K. The ABCTM rotor—A historical perspective[C]//The 60th Annual Forum of the Ame⁃rican Helicopter Scoiety, International. Baltimore, USA: [s.n.], 2004.

    • 11

      PAGLINO V M,BENO E A. Full⁃scale wind tunnel investigation of the advancing blade concept rotor system: AD 734338[R]. Fort Eustis, USA: USAAVLABS, 1971.

    • 12

      FELKER F F. Performance and loads data from a wind tunnel test of a full⁃scale, coaxial, hingeless rotor helicopter:NASA/TM⁃81329[R].USA:NASA, 1981.

    • 13

      LORBER P, LAW G, O'NEILL J, et al. Overview of S⁃97 RAIDER scale model tests[C]//The AHS 72th Annual Forum.West Palm Beach, USA:

      [s.n.], 2016.

    • 14

      于世美, 邓彦敏. 共轴式双旋翼悬停流场的水洞PIV测量[J]. 航空动力学报, 2007, 22(11): 1852⁃1857.

      YU Shimei, DENG Yanmin. PIV measurement of water tunnel for the flow field of a hovering coaxial rotor[J]. Journal of Aerospace Power, 2007, 22(11): 1852⁃1857.

    • 15

      马杨超, 于世美, 邓彦敏. 共轴式双旋翼悬停诱导速度场的PIV实验研究[J]. 实验流体力学, 2012, 26(1): 16⁃20.

      MA Yangchao, YU Shimei, DENG Yanmin. PIV experimental investigation of coaxial rotor's induced velocity field in hover [J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 16⁃20.

    • 16

      唐正飞, 高正. 共轴双旋翼与单旋翼悬停流场实验测量值的对比[J]. 南京航空航天大学学报, 1997, 29(6): 627⁃632.

      TANG Zhengfei, GAO Zheng. Comparison of experimental data for the coaxial rotor and single rotor flowfield in hovering[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(6): 627⁃632.

黄明其

机 构:中国空气动力研究与发展中心, 绵阳, 621000

Affiliation:China Aerodynamics Research and Development Center, Mianyang, 621000 , China

角 色:通讯作者

Role:Corresponding author

邮 箱:hmq1s@163.com

作者简介:黄明其,男,研究员,E⁃mail:hmq1s@163.com。

王畅

机 构:中国空气动力研究与发展中心, 绵阳, 621000

Affiliation:China Aerodynamics Research and Development Center, Mianyang, 621000 , China

岳廷瑞

机 构:中国空气动力研究与发展中心, 绵阳, 621000

Affiliation:China Aerodynamics Research and Development Center, Mianyang, 621000 , China

傅澔

机 构:中国空气动力研究与发展中心, 绵阳, 621000

Affiliation:China Aerodynamics Research and Development Center, Mianyang, 621000 , China

王亮权

机 构:中国空气动力研究与发展中心, 绵阳, 621000

Affiliation:China Aerodynamics Research and Development Center, Mianyang, 621000 , China

张蓓

角 色:中文编辑

Role:Editor

html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F001.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F002.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F003.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F004.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F005.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F006.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F007.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F008.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F009.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F010.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F011.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F012.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F013.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F014.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F015.jpg
html/njhkht/201902003/alternativeImage/23757b36-a5a8-415a-8b49-8f4ecd935530-F016.jpg

图1 二维PIV系统工作结构图

Fig.1 Schematic of 2D PIV system

图2 共轴刚性旋翼流场试验照片

Fig.2 Picture of flowfield test of rigid coaxial rotor

图3 ø2 m共轴刚性旋翼模型试验台

Fig.3 Test stand of ø2 m rigid coaxial rotor

图4 共轴刚性旋翼试验桨叶外形

Fig.4 Geometry shape of rigid coaxial rotor blade

图5 PIV流场测量区域示意图

Fig.5 Schematic of PIV flowfield measuring zone

图6 单旋翼悬停尾迹试验烟流瞬时照片

Fig.6 Smoke flow picture of the single rotor in hover

图7 单旋翼1 100 r/min转速试验结果

Fig.7 PIV test result of the single rotor with 1 100 r/min

图8 单旋翼1 860 r/min转速试验结果

Fig.8 PIV test result of the single rotor with 1 860 r/min

图9 共轴刚性旋翼悬停尾迹试验烟流瞬时照片

Fig.9 Smoke flow picture of rigid coaxial rotor in hover

图10 共轴刚性旋翼1 100 r/min转速试验结果

Fig.10 PIV test result of rigid coaxial rotor with 1 100 r/min

图11 共轴刚性旋翼1 860 r/min转速试验结果

Fig.11 PIV test result of rigid coaxial rotor with 1 860 r/min

图12 单旋翼与共轴刚性旋翼诱导速度场的对比(1 100 r/min, 8°总距)

Fig.12 Comparison of the induced flow between single rotor and rigid coaxial rotor (1 100 r/min, 8° collective pitch)

图12 单旋翼与共轴刚性旋翼诱导速度场的对比(1 100 r/min, 8°总距)

Fig.12 Comparison of the induced flow between single rotor and rigid coaxial rotor (1 100 r/min, 8° collective pitch)

图13 单旋翼与共轴刚性旋翼诱导速度场的对比(1 100 r/min, 10°总距)

Fig.13 Comparison of the induced flow between single rotor and rigid coaxial rotor (1 100 r/min, 10° collective pitch)

图14 单旋翼与共轴刚性旋翼诱导速度场的对比(1 860 r/min, 8°总距)

Fig.14 Comparison of the induced flow between single rotor and rigid coaxial rotor (1 860 r/min, 8° collective pitch)

图15 单旋翼与共轴刚性旋翼诱导速度场的对比(1 860 r/min, 10°总距)

Fig.15 Comparison of the induced flow between single rotor and rigid coaxial rotor (1 860 r/min, 10° collective pitch)

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      LEISHMAN J G. Principles of helicopter aerody⁃namics[M]. U.K.: Cambridge University Press, 2006.

    • 2

      JAMES S. Experimental investigation of rotor vortex wakes in descent[C]//42nd AIAA Aerospace Scienc⁃es Meeting and Exhibit. Reno USA: AIAA, 2004: 297⁃307.

    • 3

      GREEN R B, GILLIES E A, BROWN R E. The flow field around a rotor in axial descent[J]. Journal of Fluid Mechanics, 2005, 534: 237⁃261.

    • 4

      LANDGREBE A J. The wake geometry of a hovering helicopter and its influence on rotor performance [J]. Journal of the American Helicopter Society, 1972,17(4): 3⁃15.

    • 5

      杨永东, 武杰. 悬停旋翼桨尖涡的试验研究[J]. 实验流体力学, 2008, 22(3): 36⁃39.

      YANG Yongdong, WU Jie. Investigation of hovering rotor tip vortex[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 36⁃39.

    • 6

      袁红刚, 李进学, 杨永东,等. 前飞状态旋翼尾迹测量试验研究[J]. 实验流体力学, 2010, 24(4): 29⁃32.

      YUAN Honggang, LI Jinxue, YANG Yongdong, et al. Test investigation of measuring wake geometry for helicopter rotors in forward flight[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 29⁃32.

    • 7

      刘平安, 林永峰, 陈垚峰,等. 旋翼悬停状态桨尖涡测量方法研究[J]. 实验流体力学, 2017, 31(4): 39⁃44.

      LIU Ping’an, LIN Yongfeng, CHEN Yaofeng, et al. Blade tip vortex measurements of a hovering rotor [J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 39⁃44.

    • 8

      李春华, 曹金华, 吴裕平. 直升机旋翼流场特性PIV试验分析[J]. 直升机技术, 2012(1): 6⁃10.

      LI Chunhua, CAO Jinhua, WU Yuping. PIV experimental investigation on flow field for helicopter rotor [J]. Helicopter Technique, 2012(1): 6⁃10.

    • 9

      黄水林, 林永峰, 黄建萍,等. 基于PIV技术的纵列式双旋翼尾迹特性实验研究[J]. 空气动力学学报, 2012, 30(3): 334⁃339.

      HUANG Shuilin, LIN Yongfeng, HUANG Jianping, et al. Experimental investigation on the wake characteristics of tandem twin rotors[J]. Acta Aerodynamica Sinica, 2012, 30(3): 334⁃339.

    • 10

      BURGESS R K. The ABCTM rotor—A historical perspective[C]//The 60th Annual Forum of the Ame⁃rican Helicopter Scoiety, International. Baltimore, USA: [s.n.], 2004.

    • 11

      PAGLINO V M,BENO E A. Full⁃scale wind tunnel investigation of the advancing blade concept rotor system: AD 734338[R]. Fort Eustis, USA: USAAVLABS, 1971.

    • 12

      FELKER F F. Performance and loads data from a wind tunnel test of a full⁃scale, coaxial, hingeless rotor helicopter:NASA/TM⁃81329[R].USA:NASA, 1981.

    • 13

      LORBER P, LAW G, O'NEILL J, et al. Overview of S⁃97 RAIDER scale model tests[C]//The AHS 72th Annual Forum.West Palm Beach, USA:

      [s.n.], 2016.

    • 14

      于世美, 邓彦敏. 共轴式双旋翼悬停流场的水洞PIV测量[J]. 航空动力学报, 2007, 22(11): 1852⁃1857.

      YU Shimei, DENG Yanmin. PIV measurement of water tunnel for the flow field of a hovering coaxial rotor[J]. Journal of Aerospace Power, 2007, 22(11): 1852⁃1857.

    • 15

      马杨超, 于世美, 邓彦敏. 共轴式双旋翼悬停诱导速度场的PIV实验研究[J]. 实验流体力学, 2012, 26(1): 16⁃20.

      MA Yangchao, YU Shimei, DENG Yanmin. PIV experimental investigation of coaxial rotor's induced velocity field in hover [J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 16⁃20.

    • 16

      唐正飞, 高正. 共轴双旋翼与单旋翼悬停流场实验测量值的对比[J]. 南京航空航天大学学报, 1997, 29(6): 627⁃632.

      TANG Zhengfei, GAO Zheng. Comparison of experimental data for the coaxial rotor and single rotor flowfield in hovering[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(6): 627⁃632.

  • 您是第位访问者
    网站版权 © 南京航空航天大学学报
    技术支持:北京勤云科技发展有限公司