en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
LIANGJ,LIW,XUG Y,et al.Preparation and characterization of the colored coating with low infrared emissivity based on nanometer pigment[J].Progress in Organic Coatings,2018,115:74-78.
参考文献 2
郭军红,邵竞尧,许芬,等.RAM-相变微胶囊红外微波隐身复合材料[J].精细化工,2017,34(12):1350-1355.
GUOJunhong,SHAOJingyao,XUFen,et al.RAMmicroencapsulated phase change infrared and microwave stealth composites[J].Fine Chemicals,2017,34(12):1350-1355.
参考文献 3
刘宁,徐国跃,谭淑娟,等.耐高温低发射率涂层的低温固化及抗热震研究[J].南京航空航天大学学报,2017,49(1):45-49.
LIUNing, XUGuoyue, TANShujuan, et al. Low temperature curing and thermal shock resistance of heat-resistant low-infrared-emissivity coatings[J]. Journal of Nanjing University of Aeronautics & Astronautics,2017, 49(1):45-49.
参考文献 4
钱雪,徐国跃,谭淑娟,等.3~5 μm波段耐高温低发射率涂层抗热震性能研究[J].南京航空航天大学学报,2016,48(1):48-52.
QIANXue, XUGuoyue, TANShujuan, et al. Thermal shock resistance of low emissivity coatings in 3― 5 μm band with high temperature resistance[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(1):48-52.
参考文献 5
刘凯. 色度与红外低发射率性能兼容涂层制备及性能研究[D]. 南京:南京航空航天大学, 2016.
LIUKai. Research on preparation and properties of chroma compatible with low infrared emission coatings [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
参考文献 6
YUH J, XUG Y, SHENX M, et al. Effects of size,shape and floatage of Cu particles on the low infrared emissivity coatings[J]. Progress in Organic Coatings, 2009, 66(2):161-166.
参考文献 7
QIAOZ, MAOJ. Multifunctional poly(melamine‑ urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity[J]. Materials Science & Engineering B, 2017, 226:86-93.
参考文献 8
林丽隽.水性炭黑色浆的制备及性能研究 [D].广州:华南理工大学,2012.
LINLijun. Study on preparation and performance of aqueous carbon black dispersions[D]. Guangzhou: South China University of Technology, 2012.
参考文献 9
PANW L, ZHOUY M, HEM, et al. Synthesis, helicity, and low infrared emissivity of optically active polys(N-propargylamide) bearing stigmasteryl moieti- es[J]. Journal of Molecular Structure, 2017, 1142:285-292.
参考文献 10
LIUY F, XIEJ L, LUOM, et al. The synthesis and optical properties of Al/MnO2 composite pigments by ball-milling for low infrared emissivity and low lightn‑ ess [J]. Progress in Organic Coatings, 2017, 108:30-35.
参考文献 11
KOZLOVAA A, KONDRASHOVE K, DEEVI S. Protective properties of paint and lacquer coatings based on a fluorine-containing film-forming material [J]. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52(7):1181-1186.
参考文献 12
OLAHA, CROITORUC, TIEREANM H. Surf-ace properties tuning of welding electrode deposited hardfacings by laser heat treatment[J]. Applied Sur-face Science, 2018, 438:41-50.
参考文献 13
SALCAE A,KRYSTOFIAKT,LIS B.Evaluation of selected properties of alder wood as functions of sanding and coating[J]. Coatings, 2017, 7(10):176.
参考文献 14
叶圣天,成声月,刘朝辉,等.冷颜料在红外隐身涂料中的应用[J].表面技术,2016,45(2):139-143.
YEShengtian, CHENGShengyue, LIUZhaohui, et al. Application of cold pigments in infrared stealth coat-ings[J]. Surface Technology, 2016, 45(2):139-143.
参考文献 15
WUC Y, ZHANGJ. Corrosion protection of Mg alloys by cathodic electrodeposition coating pretreated with silane[J]. Journal of Coatings Technology and Research, 2010, 7(6):727-735.
参考文献 16
易勇,谌绍林,冯钦邦,等.炭黑型硅胶色浆表征方法探讨及其应用[J].有机硅材料,2016,30(3):225-228.
YIYong,CHENShaolin,FENGQinbang,et al.Study on characterization of carbon black silicone colorant and its application[J].Silicone Material,2016,30(3):225-228.
目录 contents

    摘要

    以铝、黑色色浆为填料,氟树脂为粘合剂,制备了氟树脂/铝红外涂层,研究了黑色色浆含量对氟树脂/铝红外涂层性能的影响。性能测试包括光泽度、色差、红外发射率、硬度、附着力、抗冲击性、粗糙度、光学测试、耐腐蚀性等。结果表明,在黑色色浆含量为1.0%时,整个氟树脂涂层的性能最优。当黑色色浆的含量由1.0%上升到9.0%,涂层表面光泽度不断下降,涂层ΔE值不断减小,涂层表面红外发射率逐渐升高,涂层的硬度都是6H,涂层的附着力等级为0级,红外光谱吸收峰逐渐增强。当黑色色浆含量为0%~3.0%,抗冲击性都超过50 kg·cm,抗冲击性较大。当黑色色浆含量为0%~5.0%时,涂层表面粗糙度比较低。当黑色色浆含量为1.0%时,涂层的耐腐蚀性能最佳。

    Abstract

    Fluorine resin/aluminum infrared coating is prepared with aluminum black color pulp as filler and fluorine resin as binder. The effect of black color pulp content on the performance of fluorine resin/aluminum infrared coating is investigated. Performance tests include glossiness, color aberration, infrared emissivity, hardness, adhesion, impact resistance, roughness, optical testing, corrosion resistance, etc. The results show that when the content of black color pulp is 1.0%, the performance of the whole fluorine resin coating is the best. When the content of black color pulp increases from 1.0% to 9.0%, the surface glossiness of the coating decreases continuously. The ΔE value of the coating decreases. Infrared emissivity of coating surface increases gradually. The hardness of the coating is 6H. The adhesion of the coating is grade 0, and the absorption peak of infrared spectrum gradually enhances. When the content of black color pulp is 0%―3.0%, the impact resistance is higher than 50 kg·cm, and the impact resistance is high. When the content of black color pulp is 0%―5.0%, the surface roughness of the coating is low. When the black color pulp content is 1.0%, the corrosion resistance of the coating is the highest.

    伴随着红外探测设备以及红外制导武器的快速发展,红外低发射率涂层(Infrared low emissivity coating, IRLEC)已经成为当下比较重点关注的话[1]。构成涂层组成的3种组成物质:助剂、填料、粘合剂,其中,填料中金属填料性能最优,对可见光的反射能力很强,得到的红外隐身性能较好,不过对于可见光隐身无益,而铝由于便宜容易得、性能较好,因此应用最多。各类粘合剂都具有相对较高的发射[2]。红外隐身性能的实现主要侧重于填料的性质,有时候为了改善红外性能,还需要添加一些助剂。

    国内研究红外热隐身涂料有较强的基础。低发射率是 IRLEC 最关键的指标,国内发射率指标普遍较高(大于 0.50)的现状在很长一段时间内一直困扰着研究人员,国内研制的涂层发射率与国外的报道(0.10 左右)存在较大差[3,4]。徐国跃等在红外低发射率涂料方面的研究取得了重大进[5,6]。对IRLEC进行光泽度控制,并同时具有较好的力学和耐腐蚀性能一直是研究的热[7]

    本文旨在通过定量改变黑色色浆的加入量,对氟树脂/铝红外涂层进行物理改性,并探索该类改性对光泽度、色差、红外发射率、硬度、附着力、抗冲击性、粗糙度、光学测试、耐腐蚀性等的影响,以求得红外发射率较低时的黑色色浆含量。

  • 1 氟环氧/Al涂膜样品制备和测试

    1
  • 1.1 实验材料及设备

    1.1
  • (1) 实验原材料

    (1)

    涂料:FPU树脂和固化剂JF100由巨化集团提供。

    填料:Al粉4017。

    基材:100 mm×50 mm×1 mm铝板。

    其他辅助材料:纳米浆黑9927由宜高公司提供,是将炭黑颜料加入丙二醇甲醚醋酸酯、复合二元酸和醋酸丁酯等溶剂中,然后加入特殊结构的超分散剂、流变剂和触变剂进行研磨。炭黑颜料含量为20%,粒径为纳米级别。

  • (2) 实验设备

    (2)

    固化设备:鼓风干燥机。

    测试设备:电子天平,光泽度测量仪,涂层划格计,粗糙度仪,色差仪,红外发射率仪。

  • 1.2 涂层制备

    1.2

    第一步在基板上实行预处理,第二步用砂纸打磨、除油,然后在烘箱中烘干。纳米浆黑9927按照预先设定好的量加入Al粉和FPU树脂为固定比率的涂料中,混合搅拌均匀,后沉积在事先处理平整的铝板基板(100 mm×50 mm×1 mm)上,涂层厚度大约60 μm,在鼓风干燥机中40 ℃环境下固化2 h。

    在预实验中,氟树脂质量与固化剂质量比例为10∶1,铝粉质量/(铝粉+氟树脂+固化剂质量)为40%,(氟树脂+固化剂质量)/(铝粉+氟树脂+固化剂)为60%,黑色色浆质量/(铝粉+氟树脂+固化剂+黑色色浆质量)为0, 1.0%, 3.0%, 5.0%, 7.0%, 9.0%, 10.0%。各个变量如表1所示。

    表1 不同颜料组成配比实验表

    Tab.1 Experimental table of composition of different pigments

    编号纳米浆黑含量/%铝粉质量/g氟树脂+固化剂质量/g黑色色浆质量/g
    102.003.000
    21.01.982.970.05
    33.01.942.910.15
    45.01.902.850.25
    57.01.862.790.35
    69.01.822.730.45
    710.01.802.700.50
  • 1.3 测试与表征

    1.3

    涂层的表面结构和形态通过JSM-5610LV 扫描电镜表征。涂层抗冲击强度按GB/T1732―93进行测定。涂层8~14 μm 红外发射率通过Bruker Vertex 70 红外发射率测试仪测试。涂层光泽度采用BGD512-60型光泽度仪(广州标格达实验仪器用品有限公司生产)进行测试。将样品浸泡在3.5 %(质量分数) NaCl溶液中,待监测开路电位稳定后,进行塔菲尔极化测试,测试范围为开路电位±0.3 V。

  • 2 结果与讨论

    2

    由表2和图1可知,加入黑色色浆后,氟树脂涂层表面光泽度已经低于35%,达到了亚光光泽度,同时当黑色色浆含量不断增加时,涂层表面光泽度不断下降,下降速率保持一定。黑色色浆的主要成分是炭黑,炭黑颗粒粒度大,颗粒大小不均,含量越高颗粒大小的不均程度越高,所以光泽度越[8]

    表2 光泽度实验表

    Tab.2 Experimental table of glossiness

    编号黑色色浆含量/%氟树脂+固化剂质量/g黑色色浆质量/g光泽度/%
    103.00023.0
    212.970.0517.6
    332.910.1515.0
    452.850.2512.8
    572.790.8510.1
    692.730.457.4
    7102.700.505.6
    图1
                            黑色色浆含量对于光泽度的影响

    图1 黑色色浆含量对于光泽度的影响

    Fig.1 Effect of black color pulp content on glossiness

    通过图2和表3可知,当黑色色浆量不断增加时,涂层的L*值不断减小。同时当黑色色浆含量由0增加到9.0%时,涂层ΔE值不断减小到6.7;当黑色色浆含量由9.0%增加到10.0%,色差值由6.7增加到9.6。颜料的显色是由光线对其发色基团与助色基团的作用结果,颜料粒子的大小对其颜色性能也有很大的影响。为了保证少量配色色光反应一致,在一定范围内颜料粒度提高,遮盖力增加。粒径越小的粒子,其比表面积愈大,吸收光能就多,细度小,其着色力提高。粒径小的粒子过多,容易发生絮凝,不利于分散,光泽度降[9]

    图2
                            黑色色浆含量对于L值的影响

    图2 黑色色浆含量对于L值的影响

    Fig.2 Effect of black color pulp content on L value

    表3 色差实验表

    Tab.3 Experimental table of color difference

    编号黑色色浆含量/%铝粉质量/g氟树脂+固化剂质量/g黑色色浆质量/gL*a*b*ΔE
    102.003.00067.81.1-2.342.1
    21.01.982.970.0554.62.83.329.5
    33.01.942.910.1543.92.55.520.1
    45.01.902.850.2531.92.55.010.4
    57.01.862.790.3528.02.35.79.5
    69.01.822.730.4523.53.02.76.7
    710.01.802.700.5021.82.35.19.6

    通过表4和图3可知,伴随黑色色浆含量增加,氟树脂涂层表面红外发射率逐渐升高,且由此可见,黑色色浆含量对于涂层表面红外发射率有明显影响,增加了氟树脂涂层的表面红外发射率。红外光线射入涂层后,穿过含有黑色色浆的成膜物质,黑色色浆吸收红外光,从而使发射率增加。红外光线的传输过程到达铝粉表面,被铝粉反射和黑色色浆吸收,涂层显色的同时增加了红外发射[10]。当黑色色浆含量小于3.0%时,涂层具有较低的红外发射率。

    表4 红外发射率实验表

    Tab.4 Experimental table of infrared emission rate

    编号黑色色浆含量/%铝粉质量/g氟树脂质量+固化剂质量/g黑色色浆质量/g红外发射率
    102.003.0000.115
    21.01.982.970.050.166
    33.01.942.910.150.266
    45.01.902.850.250.325
    57.01.862.790.850.479
    69.01.822.730.450.493
    710.01.802.700.500.566
    图3
                            黑色色浆含量对于红外发射率的影响

    图3 黑色色浆含量对于红外发射率的影响

    Fig.3 Effect of black color pulp content on infrared emissi-vity

    根据实验可知,当黑色色浆含量从0%~10.0%,氟树脂涂层的硬度都是6H。表面黑色色浆加入不影响涂层的硬度,涂层可以完全固化。由图4可知,当黑色色浆含量为0%~9.0%,涂层的附着力等级为0级,当含量为10.0%时,附着力等级为1级。铝粉密度低,在涂料中的漂浮力较大,使其在涂层表面分布较多,导致色浆中的炭黑颗粒在涂层表面分布相对较少且不是很均匀,因此黑色色浆增加至10.0%,增加了涂层对基板的附着[11]

    图4
                            黑色色浆含量对附着力的影响

    图4 黑色色浆含量对附着力的影响

    Fig.4 Influence of black color pulp content on adhesion

    通过图5可知,当黑色色浆含量为0%~3.0%,抗冲击性都是50 kg·cm,抗冲击性较大。当黑色色浆含量为10.0%,抗冲击性最小。黑色色浆添加量高于5.0%,继续增大,涂层的抗冲击性能越差,这是由于表面炭黑添加量越多,涂层的固含量越大,相对的树脂含量降低了,涂层呈现粉体状态程度增强,导致抗冲击性能降[12]

    图5
                            黑色色浆含量对抗冲击性的影响

    图5 黑色色浆含量对抗冲击性的影响

    Fig.5 Effect of black color pulp content on impact resistance

    通过图6可知,当黑色色浆含量为0%~5.0%,涂层表面粗糙度比较低,涂层光滑。当黑色色浆含量为5.0%~10.0%时,涂层表面粗糙度较高,涂层的粗糙度随着黑色色浆含量的增加而增加。这是由于大量炭黑粒子的分布是不均匀的,其涂层表面呈现凸凹不平状态,致使粗糙度增[13]

    图6
                            黑色色浆含量对粗糙度的影响

    图6 黑色色浆含量对粗糙度的影响

    Fig.6 Effect of black color pulp content on roughness

    通过图7可知,当黑色色浆从含量为1.0%增加到7.0%和10.0%时,红外光谱吸收峰逐渐增强,有利于减小表面反射率,从而增加了近红外波段的吸收,导致红外发射率的增[14]

    图7
                            黑色色浆含量对红外光谱的影响

    图7 黑色色浆含量对红外光谱的影响

    Fig.7 Influence of black color pulp content on infrared spe-ctrum

    经过力学性能、光学性能测试以及红外光谱的测试,当黑色色浆含量为0~3.0%时,性能较优。所以,将0%,1.0%和3.0%黑色色浆所对应的涂层进行耐腐蚀性能测试。将这3种黑色色浆含量的铝板浸在盐水中测试,得到图8和表5的数据。

    图8
                            不同黑色色浆含量的塔菲尔曲线图

    图8 不同黑色色浆含量的塔菲尔曲线图

    Fig.8 Tafel curves of black color pulp with different conte-nts

    表5 黑色色浆含量对耐腐蚀性能的影响(resistance)

    Tab.5 Effect of black color pulp content on corrosion(resistance)

    含量/%Ecorr/VRp/(Ω·cm-2)Icorr/(A·cm-2)βa/(mV·dec-1)βc/(mV·dec-1)
    0-0.804670.22.791×10-572.75105
    1.0-0.7721 899.88.821×10-656.30122
    3.0-0.776639.73.582×10-590.34127

    由表5可知,电位Ecorr(V)越高,电阻Rp(Ω/cm2)越大,电流Icorr(A/cm2)越小,耐腐蚀性能越好。所以,当黑色色浆含量为1.0%时,氟树脂涂层性能最好。由图9的扫描电镜图也可以看出,黑色色浆的添加影响了涂层的致密[15]。黑色色浆中的炭黑作为无机粉体填料添加到涂料里,在与氟树脂结合成涂膜的时候,由于受到炭黑表面形状、粒径、涂料体系中表面润湿剂和溶剂的影响,在树脂和导电炭黑之间会形成结合的缺陷,从而影响整个涂膜的致密性,并且炭黑添加越多,这种树脂与炭黑间的缺陷越严重,从而影响了涂层阻抗水分和氧气渗透的能[16]

    图9
                            不同黑色色浆含量的扫描电镜图

    图9 不同黑色色浆含量的扫描电镜图

    Fig.9 Scanning electron microscopy of different black color pulp ment contents

  • 3 结 论

    3

    (1)通过改变黑色色浆的含量,同时使铝粉和氟树脂含量保持固定比值,制备出涂层表面低红外发射率和低亚光光泽度以及明度较低、附着力及抗冲击性较好、低粗糙度的涂层。

    (2)在黑色色浆含量为1.0%时,整个氟树脂涂层的光泽度较低,且明度较低;在黑色色浆含量为1.0%时,氟树脂涂层有较好的附着力、较低的粗糙度、较好的抗冲击性。

    (3)综合考虑各种性能,当黑色色浆含量为1.0%时,能够得到综合性能优良的低红外发射率、低光泽度的氟树脂涂层。

  • 参考文献

    • 1

      LIANG J,LI W,XU G Y,et al.Preparation and characterization of the colored coating with low infrared emissivity based on nanometer pigment[J].Progress in Organic Coatings,2018,115:74-78.

    • 2

      郭军红,邵竞尧,许芬,等.RAM-相变微胶囊红外微波隐身复合材料[J].精细化工,2017,34(12):1350-1355.

      GUO Junhong,SHAO Jingyao,XU Fen,et al.RAMmicroencapsulated phase change infrared and microwave stealth composites[J].Fine Chemicals,2017,34(12):1350-1355.

    • 3

      刘宁,徐国跃,谭淑娟,等.耐高温低发射率涂层的低温固化及抗热震研究[J].南京航空航天大学学报,2017,49(1):45-49.

      LIU Ning, XU Guoyue, TAN Shujuan, et al. Low temperature curing and thermal shock resistance of heat-resistant low-infrared-emissivity coatings[J]. Journal of Nanjing University of Aeronautics & Astronautics,2017, 49(1):45-49.

    • 4

      钱雪,徐国跃,谭淑娟,等.3~5 μm波段耐高温低发射率涂层抗热震性能研究[J].南京航空航天大学学报,2016,48(1):48-52.

      QIAN Xue, XU Guoyue, TAN Shujuan, et al. Thermal shock resistance of low emissivity coatings in 3― 5 μm band with high temperature resistance[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(1):48-52.

    • 5

      刘凯. 色度与红外低发射率性能兼容涂层制备及性能研究[D]. 南京:南京航空航天大学, 2016.

      LIU Kai. Research on preparation and properties of chroma compatible with low infrared emission coatings [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.

    • 6

      YU H J, XU G Y, SHEN X M, et al. Effects of size,shape and floatage of Cu particles on the low infrared emissivity coatings[J]. Progress in Organic Coatings, 2009, 66(2):161-166.

    • 7

      QIAO Z, MAO J. Multifunctional poly(melamine‑ urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity[J]. Materials Science & Engineering B, 2017, 226:86-93.

    • 8

      林丽隽.水性炭黑色浆的制备及性能研究 [D].广州:华南理工大学,2012.

      LIN Lijun. Study on preparation and performance of aqueous carbon black dispersions[D]. Guangzhou: South China University of Technology, 2012.

    • 9

      PAN W L, ZHOU Y M, HE M, et al. Synthesis, helicity, and low infrared emissivity of optically active polys(N-propargylamide) bearing stigmasteryl moieti- es[J]. Journal of Molecular Structure, 2017, 1142:285-292.

    • 10

      LIU Y F, XIE J L, LUO M, et al. The synthesis and optical properties of Al/MnO2 composite pigments by ball-milling for low infrared emissivity and low lightn‑ ess [J]. Progress in Organic Coatings, 2017, 108:30-35.

    • 11

      KOZLOVA A A, KONDRASHOV E K, DEEV I S. Protective properties of paint and lacquer coatings based on a fluorine-containing film-forming material [J]. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52(7):1181-1186.

    • 12

      OLAH A, CROITORU C, TIEREAN M H. Surf-ace properties tuning of welding electrode deposited hardfacings by laser heat treatment[J]. Applied Sur-face Science, 2018, 438:41-50.

    • 13

      SALCA E A,KRYSTOFIAK T,LIS B.Evaluation of selected properties of alder wood as functions of sanding and coating[J]. Coatings, 2017, 7(10):176.

    • 14

      叶圣天,成声月,刘朝辉,等.冷颜料在红外隐身涂料中的应用[J].表面技术,2016,45(2):139-143.

      YE Shengtian, CHENG Shengyue, LIU Zhaohui, et al. Application of cold pigments in infrared stealth coat-ings[J]. Surface Technology, 2016, 45(2):139-143.

    • 15

      WU C Y, ZHANG J. Corrosion protection of Mg alloys by cathodic electrodeposition coating pretreated with silane[J]. Journal of Coatings Technology and Research, 2010, 7(6):727-735.

    • 16

      易勇,谌绍林,冯钦邦,等.炭黑型硅胶色浆表征方法探讨及其应用[J].有机硅材料,2016,30(3):225-228.

      YI Yong,CHEN Shaolin,FENG Qinbang,et al.Study on characterization of carbon black silicone colorant and its application[J].Silicone Material,2016,30(3):225-228.

闫小星

机 构:南京林业大学家居与工业设计学院,南京,210037

Affiliation:College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, 210037, China

角 色:通讯作者

Role:Corresponding author

邮 箱:yanxiaoxing@nuaa.edu.cn

作者简介:闫小星,女,副教授,硕士生导师,E-mail:yanxiaoxing@nuaa.edu.cn。

潘萍

机 构:南京林业大学家居与工业设计学院,南京,210037

Affiliation:College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, 210037, China

徐国跃

机 构:南京航空航天大学材料科学与技术学院,南京,211106

Affiliation:College of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing ,211106, China

胥橙庭

角 色:中文编辑

Role:Editor

编号纳米浆黑含量/%铝粉质量/g氟树脂+固化剂质量/g黑色色浆质量/g
102.003.000
21.01.982.970.05
33.01.942.910.15
45.01.902.850.25
57.01.862.790.35
69.01.822.730.45
710.01.802.700.50
编号黑色色浆含量/%氟树脂+固化剂质量/g黑色色浆质量/g光泽度/%
103.00023.0
212.970.0517.6
332.910.1515.0
452.850.2512.8
572.790.8510.1
692.730.457.4
7102.700.505.6
html/njhkht/201901020/alternativeImage/7eaf30ea-dd56-4902-9727-d7d9474cccfc-F001.jpg
html/njhkht/201901020/alternativeImage/7eaf30ea-dd56-4902-9727-d7d9474cccfc-F002.jpg
编号黑色色浆含量/%铝粉质量/g氟树脂+固化剂质量/g黑色色浆质量/gL*a*b*ΔE
102.003.00067.81.1-2.342.1
21.01.982.970.0554.62.83.329.5
33.01.942.910.1543.92.55.520.1
45.01.902.850.2531.92.55.010.4
57.01.862.790.3528.02.35.79.5
69.01.822.730.4523.53.02.76.7
710.01.802.700.5021.82.35.19.6
html/njhkht/201901020/alternativeImage/7eaf30ea-dd56-4902-9727-d7d9474cccfc-F003.jpg
编号黑色色浆含量/%铝粉质量/g氟树脂质量+固化剂质量/g黑色色浆质量/g红外发射率
102.003.0000.115
21.01.982.970.050.166
33.01.942.910.150.266
45.01.902.850.250.325
57.01.862.790.850.479
69.01.822.730.450.493
710.01.802.700.500.566
html/njhkht/201901020/alternativeImage/7eaf30ea-dd56-4902-9727-d7d9474cccfc-F004.jpg
html/njhkht/201901020/alternativeImage/7eaf30ea-dd56-4902-9727-d7d9474cccfc-F005.jpg
html/njhkht/201901020/alternativeImage/7eaf30ea-dd56-4902-9727-d7d9474cccfc-F006.jpg
html/njhkht/201901020/alternativeImage/7eaf30ea-dd56-4902-9727-d7d9474cccfc-F007.jpg
html/njhkht/201901020/alternativeImage/7eaf30ea-dd56-4902-9727-d7d9474cccfc-F008.jpg
含量/%Ecorr/VRp/(Ω·cm-2)Icorr/(A·cm-2)βa/(mV·dec-1)βc/(mV·dec-1)
0-0.804670.22.791×10-572.75105
1.0-0.7721 899.88.821×10-656.30122
3.0-0.776639.73.582×10-590.34127
html/njhkht/201901020/alternativeImage/7eaf30ea-dd56-4902-9727-d7d9474cccfc-F009.jpg

表1 不同颜料组成配比实验表

Tab.1 Experimental table of composition of different pigments

表2 光泽度实验表

Tab.2 Experimental table of glossiness

图1 黑色色浆含量对于光泽度的影响

Fig.1 Effect of black color pulp content on glossiness

图2 黑色色浆含量对于L值的影响

Fig.2 Effect of black color pulp content on L value

表3 色差实验表

Tab.3 Experimental table of color difference

图3 黑色色浆含量对于红外发射率的影响

Fig.3 Effect of black color pulp content on infrared emissi-vity

表4 红外发射率实验表

Tab.4 Experimental table of infrared emission rate

图4 黑色色浆含量对附着力的影响

Fig.4 Influence of black color pulp content on adhesion

图5 黑色色浆含量对抗冲击性的影响

Fig.5 Effect of black color pulp content on impact resistance

图6 黑色色浆含量对粗糙度的影响

Fig.6 Effect of black color pulp content on roughness

图7 黑色色浆含量对红外光谱的影响

Fig.7 Influence of black color pulp content on infrared spe-ctrum

图8 不同黑色色浆含量的塔菲尔曲线图

Fig.8 Tafel curves of black color pulp with different conte-nts

表5 黑色色浆含量对耐腐蚀性能的影响(resistance)

Tab.5 Effect of black color pulp content on corrosion(resistance)

图9 不同黑色色浆含量的扫描电镜图

Fig.9 Scanning electron microscopy of different black color pulp ment contents

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      LIANG J,LI W,XU G Y,et al.Preparation and characterization of the colored coating with low infrared emissivity based on nanometer pigment[J].Progress in Organic Coatings,2018,115:74-78.

    • 2

      郭军红,邵竞尧,许芬,等.RAM-相变微胶囊红外微波隐身复合材料[J].精细化工,2017,34(12):1350-1355.

      GUO Junhong,SHAO Jingyao,XU Fen,et al.RAMmicroencapsulated phase change infrared and microwave stealth composites[J].Fine Chemicals,2017,34(12):1350-1355.

    • 3

      刘宁,徐国跃,谭淑娟,等.耐高温低发射率涂层的低温固化及抗热震研究[J].南京航空航天大学学报,2017,49(1):45-49.

      LIU Ning, XU Guoyue, TAN Shujuan, et al. Low temperature curing and thermal shock resistance of heat-resistant low-infrared-emissivity coatings[J]. Journal of Nanjing University of Aeronautics & Astronautics,2017, 49(1):45-49.

    • 4

      钱雪,徐国跃,谭淑娟,等.3~5 μm波段耐高温低发射率涂层抗热震性能研究[J].南京航空航天大学学报,2016,48(1):48-52.

      QIAN Xue, XU Guoyue, TAN Shujuan, et al. Thermal shock resistance of low emissivity coatings in 3― 5 μm band with high temperature resistance[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(1):48-52.

    • 5

      刘凯. 色度与红外低发射率性能兼容涂层制备及性能研究[D]. 南京:南京航空航天大学, 2016.

      LIU Kai. Research on preparation and properties of chroma compatible with low infrared emission coatings [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.

    • 6

      YU H J, XU G Y, SHEN X M, et al. Effects of size,shape and floatage of Cu particles on the low infrared emissivity coatings[J]. Progress in Organic Coatings, 2009, 66(2):161-166.

    • 7

      QIAO Z, MAO J. Multifunctional poly(melamine‑ urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity[J]. Materials Science & Engineering B, 2017, 226:86-93.

    • 8

      林丽隽.水性炭黑色浆的制备及性能研究 [D].广州:华南理工大学,2012.

      LIN Lijun. Study on preparation and performance of aqueous carbon black dispersions[D]. Guangzhou: South China University of Technology, 2012.

    • 9

      PAN W L, ZHOU Y M, HE M, et al. Synthesis, helicity, and low infrared emissivity of optically active polys(N-propargylamide) bearing stigmasteryl moieti- es[J]. Journal of Molecular Structure, 2017, 1142:285-292.

    • 10

      LIU Y F, XIE J L, LUO M, et al. The synthesis and optical properties of Al/MnO2 composite pigments by ball-milling for low infrared emissivity and low lightn‑ ess [J]. Progress in Organic Coatings, 2017, 108:30-35.

    • 11

      KOZLOVA A A, KONDRASHOV E K, DEEV I S. Protective properties of paint and lacquer coatings based on a fluorine-containing film-forming material [J]. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52(7):1181-1186.

    • 12

      OLAH A, CROITORU C, TIEREAN M H. Surf-ace properties tuning of welding electrode deposited hardfacings by laser heat treatment[J]. Applied Sur-face Science, 2018, 438:41-50.

    • 13

      SALCA E A,KRYSTOFIAK T,LIS B.Evaluation of selected properties of alder wood as functions of sanding and coating[J]. Coatings, 2017, 7(10):176.

    • 14

      叶圣天,成声月,刘朝辉,等.冷颜料在红外隐身涂料中的应用[J].表面技术,2016,45(2):139-143.

      YE Shengtian, CHENG Shengyue, LIU Zhaohui, et al. Application of cold pigments in infrared stealth coat-ings[J]. Surface Technology, 2016, 45(2):139-143.

    • 15

      WU C Y, ZHANG J. Corrosion protection of Mg alloys by cathodic electrodeposition coating pretreated with silane[J]. Journal of Coatings Technology and Research, 2010, 7(6):727-735.

    • 16

      易勇,谌绍林,冯钦邦,等.炭黑型硅胶色浆表征方法探讨及其应用[J].有机硅材料,2016,30(3):225-228.

      YI Yong,CHEN Shaolin,FENG Qinbang,et al.Study on characterization of carbon black silicone colorant and its application[J].Silicone Material,2016,30(3):225-228.

  • 您是第位访问者
    南京航空航天大学学报 ® 2024 版权所有
    技术支持:北京勤云科技发展有限公司