en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
李涤尘, 田小永, 王永信,等. 增材制造技术的发展[J].电加工与模具, 2012(A1):20-22.
LIDichen, TIANXiaoyong,WANGYongxin,et al. Developments of additive manufacturing technology[J]. Electromachining & Mould, 2012(A1):20-22.
参考文献 2
MELCHELSF P W, DOMINGOSM A N, KLEINT J, et al. Additive manufacturing of tissues and organs[J]. Progress in Polymer Science, 2012, 37(8):1079-1104.
参考文献 3
BUCHBINDERD, SCHLEIFENBAUMH, HEID-RICHS, et al. High power selective laser melting (HP SLM) of aluminum parts[J]. Physics Procedia, 2011, 12:271-278.
参考文献 4
BAUFELDB, BIEST OVAN DER, GAULTR. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties[J]. Materials & Design, 2010, 31:106-111.
参考文献 5
MARIMUTHUS, CLARKD, ALLENJ, et al. Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero‑engine component[J]. Proceedings of the Institution of Mechnical Engineers, Part C, 2012: 227(9):1987-1999.
参考文献 6
CAOJ, GHARGHOURIM A, NASHP. Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates[J]. Journal of Materials Processing Technology, 2016, 237:409-419.
参考文献 7
DUNBARA J, DENLINGERE R, HEIGELJ, et al. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, Part A, 2016,12: 25-30.
参考文献 8
BIEGLERM, GRAFB, RETHMEIERM. In‑situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations[J]. Additive Manufacturing, 2018, 20:101-110.
参考文献 9
AMANDAS W, DONALDW B, MUKULK, et al. An experimental investigation into additive manufacturing-induced residual stresses in 316L stain-less steel[J]. Metallurgical and Materials Transactions A, 2014, 45(13):6260-6270.
参考文献 10
KRUTHJ P, DECKERSJ, YASAE, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method[J]. Proceedings of the Inst-itution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(6):980-991.
参考文献 11
LIC, LIUJ F, FANGX Y, et al. Efficient predictive model of part distortion and residual stress in selective laser melting[J]. Additive Manufacturing, 2017, 17:157-168.
参考文献 12
BUCHBINDERD, MEINERSW, PIRCHN, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. Journal of Laser Applications, 2014, 26(1):012004.
参考文献 13
PRABHAKARP, SAMESW J, DEHOFFR, et al. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718[J].Additive Manufacturing, 2015,7:83-91.
参考文献 14
GHASRI-KHOUZANIM, PENGH, ROGGER, et al. Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions[J]. Materials Science and Engineering: A, 2017, 707:689-700.
参考文献 15
祝彬彬. 选择性激光熔化金属零件翘曲变形的研究[D].杭州:浙江工业大学,2017.
ZHUBinbin. Studies on distortions of metal parts in selective laser melting[D]. Hangzhou:Zhejiang University of Technology,2017.
参考文献 16
DENLINGERE R, HEIGELJ C, MICHALERISP, et al. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys[J]. Journal of Materials Processing Technology, 2015, 215:123-131.
参考文献 17
ZIELINSKIJ, MINDTH W, DÜCHTINGJ, et al. Numerical and experimental study of Ti6Al4V components manufactured using powder bed fusion additive manufacturing[J]. JOM, 2017, 69(12):2711-2718.
参考文献 18
MUGWAGWAL, DIMITROVD, MATOPES, et al. Influence of process parameters on residual stress related distortions in selective laser melting[J]. Procedia Manufacturing, 2018, 21:92-99.
参考文献 19
KRUTHJ P, FROYENL, VAERENBER-GH JVAN, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/2/3):616-622.
参考文献 20
NICKELA H, BARNETTD M, PRINZF B. Thermal stresses and deposition patterns in layered manufacturing[J]. Materials Science and Engineering: A, 2001, 317(1/2):59-64.
参考文献 21
GAOM, WANGZ M, LIX Y, et al. The effect of deposition patterns on the distortion of substrates during direct laser fabrication[J]. ASME:Journal of Engineering Materials Technology, 2013,135(3):034502-01-034502-6.
参考文献 22
ZHANGK, WANGS, LIUW, et al. Effects of substrate preheating on the thin-wall part built by laser metal deposition shaping[J]. Applied Surface Science, 2014, 317:839-855.
参考文献 23
王凯, 杨海欧, 刘奋成,等. 基板预变形下激光立体成形直薄壁件应力和变形的有限元模拟[J]. 中国激光, 2012, 39(6):68-74.
WANGKai, YANGHaiou, LIUFencheng, et al. Stress and deformation finite element method simulation of thin wall part with pre‑deformation substrate during laser solid forming[J] Chinese Journal of Lasers, 2012, 39(6):68-74.
参考文献 24
YANHui, SHENLida, WANGXiao, et al. Stress and distortion evaluation of the subarea scanning effect in direct laser-deposited Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1):915-926.
参考文献 25
MERCELISP, KRUTHJ P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006,12(5):254-265.
参考文献 26
BASSL, MILNERJ, GNÄUPEL-HEROLDT, et al. Residual stress in additive manufactured nickel alloy 625 parts[J]. ASME: Journal of Manufacturing Science and Engineering, 2018, 140(6):061004-01-061004-11.
参考文献 27
HODGEN E, FERENCZR M, VIGNESR M. Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting[J]. Additive Manufacturing, 2016,12:159-168.
参考文献 28
SUÁREZA, AMADOJ M, TOBARM J, et al. Study of residual stresses generated inside laser cladded plates using FEM and diffraction of synchrotron radiation[J]. Surface and Coatings Tech-nology, 2010, 204(12/13):1983-1988.
参考文献 29
BROWND W, BERNARDINJ D, CARPENTERJ S, et al. Neutron diffraction measurements of residual stress in additively manufactured stainless steel[J]. Materials Science and Engineering: A, 2016, 678:291-298.
参考文献 30
MOATR J, PINKERTONA J, LIL, et al. Residual stresses in laser direct metal deposited waspaloy[J]. Materials Science and Engineering: A, 2011, 528(6):2288-2298.
参考文献 31
DINGJ, COLEGROVEP, MEHNENJ, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12):3315-3322.
参考文献 32
MUKHERJEET, ZUBACKJ S, ZHANGW, et al. Residual stresses and distortion in additively manufactured compositionally graded and dissimilar joints[J]. Computational Materials Science, 2018, 143:325-337.
参考文献 33
ALESSANDROS, ELEONORAA, LUCAI, et al. Experimental analysis of residual stresses on AlSi10Mg parts produced by means of selective laser melting (SLM) [J]. Procedia CIRP, 2017, 62:458-463.
参考文献 34
AGGARANGSIP, BEUTHJ L. Localized preheating approaches for reducing residual stress in additive manufacturing[C]//Proceedings of the SFF Symposium. Austin:s.n.], 2006:709-720.
参考文献 35
BAILEYN S, KATINASC, SHINY C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses[J]. Journal of Materials Processing Technology, 2017, 247:223-233.
参考文献 36
SZOSTB A, TERZIS, MARTINAF, et al. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials & Design, 2016, 89:559-567.
参考文献 37
SEALYM, MADIREDDYG, LIC, et al. Finite element modeling of hybrid additive manufacturing by laser shock peening[C]//Solid Freeform Fabrication Symposium(SFF). Austin, Tx:s.n.], 2016:306-316.
参考文献 38
KALENTICSN, BOILLATE, PEYREP, et al. Tailoring residual stress profile of selective laser melted parts by laser shock peening[J]. Additive Manufacturing, 2017, 16:90-97.
参考文献 39
MARTINAF, ROY M J, SZOSTB A, et al. Residual stress of as-deposited and rolled wire+ arc additive manufacturing Ti-6Al-4V components[J]. Materials Science and Technology, 2016, 32(14):1439-1448.
参考文献 40
PARRYL, ASHCROFTI A, WILDMANR D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufac-turing, 2016, 12:1-15.
参考文献 41
XIED Q, ZHAOJ F, LIANGH X, et al. Assumption of constraining force to explain distortion in laser additive manufacturing[J]. Materials, 2018, 11(11):2327.
目录 contents

    摘要

    金属增材制造中的变形及残余应力对于成形过程及零件性能均会产生一定的影响,两者影响因素众多,在增材制造过程中的演化尚未明确揭示。本文综述了国内外关于金属增材制造变形和残余应力的研究现状,提出“约束力”新概念,为金属增材制造变形和残余应力机理的深入研究提供了新的方法。

    Abstract

    The distortion and residual stress in the metal additive manufacturing have a certain influence on the forming process and the performance of the parts. There are many factors that can influence the distortion and residual stress. The evolutions of the distortion and residual stress in the additive manufacturing process have not been clearly revealed. We review the research status of distortion and residual stress in metal additive manufacturing, and then summarize some laws about them. In addition, we propose the concept of “constraining force”, which can help others more distinctly understand the mechanism of distortion and residual stress in metal additive manufacturing.

    增材制造(Additive manufacturing, AM)是指依据三维模型数据将材料逐层累加,最终制造出实体的过[1]。与传统制造技术相比,增材制造技术具有柔性高、无模具、周期短、不受零件结构和材料限制等一系列优点,在航天航空、汽车、电子、医疗、军工等领域得到了广泛应[2,3,4]。增材制造自20世纪80年代出现,至今已有近40年的历史。近五年来,得益于各国、各地方政府政策上的大力扶持,科研机构大量人才集聚,以及激光器、光机等核心器件的升级优化,增材制造取得了其他技术所未见的突飞猛进的发展。从材料开发角度,已形成了金属、有机高分子为主流,陶瓷、玻璃、细胞等不断突破的态势;从成形尺寸角度,大至建筑打印几十米级,小至双光子聚合几十纳米级,而跨尺寸增材制造则显示出兼顾精度和效率的独特优势;从产品应用角度,航空航天、医疗领域很好地发挥了增材制造定制化、低成本制造复杂结构的优势,电子器件则利用了增材制造可累加不同性质材料的特点,增材制造的应用已呈现新产品不断涌现、部分产品规模化生产的良好局面。

    金属增材制造作为增材制造体系中前沿且极具潜力的分支,在航空航天、生物医疗、汽车、模具等领域发展前景广阔,特别是近年来发展极为迅猛。知名研究机构Wohlers的年度报告指出,2017年度全球整体3D打印行业增长了21%,其中金属3D打印机的销售额则增长了80%。这主要由于金属3D打印机经过不断的迭代优化,已具有更开放的材料开发平台、更快的打印速度以及更合理的价格。

    主流的金属增材制造多使用高能量源(电子束、激光、等离子、电弧等)将金属(粉材、丝材等)加热熔化,不断堆积,最终制造出金属零件。从性能上,增材制造零件力学性能大多可达到传统制造工艺的90%以上,可基本满足使用要求。但是,金属增材制造零件成形时,由于经历骤热骤冷,很高的温度梯度导致了难以预测的变形和复杂的残余应力分布,这些都在一定程度上限制了金属增材制造的广泛应用。比如,增材制造工件产生的较大的变形易对选择性激光熔化(Selective laser melting, SLM)设备中的刮刀造成严重的损伤。又如,激光熔化沉积(Laser melting deposition, LMD)过程中变形累积会形成较大的形状误差,特别是大尺寸金属堆积,导致成形失败率较高。

    由于零件变形的规律受影响因素较多,且增材制造的零件大多为单件或小批量,规律性不强,并且不同特征零件的变形也缺乏相互借鉴,这些都导致金属增材制造零件的变形行为很难有效预测和控制。本文基于对国内外金属变形和残余应力的研究现状分析,提出一种新的方法以研究其演化规律。

  • 1 金属增材制造变形的研究现状

    1

    为准确地表征金属增材制造零件的变形,需要结合精确的测量手段及其匹配的试验设计。金属增材制造零件变形的测量主要有3种方式:三坐标测量(Coordinate measuring machine,CMM[5,6]、激光位移传感器(Laser displacement sensor,LDS)测[7]以及数字图像相关(Digital image correlation,DIC[8,9]测量。其中,CMM一般将工件从工作台取下测量,可获得零件二维的变形形貌。LDS可在线测量某一点或几点的位移变化,用以直观地表征变形随时间的变化情况。DIC则基于散斑法可测量出零件三维的形貌及其变化,可获得整体的结构变形随时间的变化,且具有很高的测量精度。

    基于上述测量技术,研究人员开展了诸多增材制造变形行为的研究。就变形形式而言, Biegler[8]利用DIC实时监测LMD过程薄壁零件的变形,提供了整体的变形形式及其在加热、冷却过程中的变化。如图1所示,金属零件的变形主要为X向(沿扫描方向)的向内收缩(图1(b))和Z向的翘曲(图1(d)),且两者沿着成形零件的中线基本对称。值得注意的是,在加热的过程中(图1(a)和(c)),X向变形为向外膨胀,而Z向则形成了反向翘曲,即边缘向下弯曲,零件中部向上翘曲。这一点在Denlinger等开展的LDS在线监测的变形研究中也得到证[7]。Kruth[10]结合焊接领域温度梯度机理(Temperature gradient mechanism,TGM)对此现象做出了解释,即在加热过程中熔池受热膨胀,熔池周围的材料产生背离熔池的压应变,而在冷却过程中,熔池冷却收缩,对原先受挤压的材料形成面向熔池的拉应变,最终形成X向的收缩和Z向的翘曲。

    图1
                            利用DIC实时监测LMD过程薄壁零件的变形[8]

    图1 利用DIC实时监测LMD过程薄壁零件的变[8]

    Fig.1 Distortion of LMD part measured by DIC[8]

    Li和Buchbindert等在SLM变形研究中,也发现了同样的规[11,12]。他们利用SLM制造了悬臂梁结构,随后用线切割去除了悬臂结构下方的支撑形成的约束,最终悬臂结构形成了对称且明显的Z向翘曲。

    图2
                            SLM悬臂梁结构变形[11]

    图2 SLM悬臂梁结构变[11]

    Fig.2 Distortion of cantilever via SLM[11]

    Cao[6]用三坐标测量的LMD成形件背面的形貌,同样发现了呈对称的Z向翘曲。Prabhakar[13]利用电子束熔化(Electrical beam melting,EBM)在平板上成形的六长条结构,结果显示平板的边角出现最大翘曲,且整体的变形分布大体上对称。Wu[9]用SLM分别成形水平和竖直放置的三棱柱,并用DIC测量后发现,零件下边角的翘曲最严重,且沿着成形结构中心或轴对称。Ghasri-Khouzani[14]利用SLM成形了一个圆盘,并用CMM测量了其与基板分离前后的形貌,结果显示圆形零件分离前平面高度基本保持一致,而与基板分离后,圆形零件的外边缘发生最大的翘曲,且翘曲沿中心轴对称。祝彬[15]基于SLM成形316L不锈钢平板并添加支撑发现,零件的翘曲量随着零件的厚度和长度的增加而增大。此外,在SLM工艺中施加重熔,可以在一定程度上能减小长条零件的翘曲变形。Denlinger[16]基于LDC在线测量零件位移随时间的变化,并发现随着堆积层数的增加,零件翘曲量也随之增加。Zielinski[17]研究了桥型结构的变形演化过程,随着成形高度的逐渐增高,Z向变形分布发生显著的改变,特别是“桥面”搭建后,整体的变形分布发生突变,且最大Z向变形量也有很大提高。

    研究人员还探讨了影响金属增材制造变形的一些因素。Mugwagwa[18]研究了不同的加工参数(激光功率、扫描速度、打印层厚)对致密度和翘曲变形的影响,发现翘曲量与致密度呈正相关。Kruth[19]对比了有无粉体加入熔池的变形量,发现熔化过程中加入粉末超过了不加入粉末零件变形量的2倍。Denlinger[16]发现增加层间冷却时间有助于减小Inconel 625的累积变形量,而对于TC4,增加层间冷却时间却增大了其变形量。他推测可能是相变在此过程中扮演了重要的角色。Nickel[20]和曾晓雁课题[21]发现Z向的变形量远远大于X向和Y向的变形。此外,对于圆形零件而言,圆弧形扫描路径比直线形扫描成形零件的变形量明显更小。而对于Inconel 718而言,后续的热处理对于变形并无明显的改善。

    Kruth[10]利用SLM构建桥型结构,发现零件与基板分离后,呈现向上翘曲的姿态。在此结构上,Kruth等系统地研究了层厚、预热、缓冷、热处理以及“岛型”扫描方式对弯曲角α的影响。结果显示,TC4成形后进行去应力热处理可以减小80%的变形,而改变扫描方式最多仅能减少36%的变形。张凯[22]通过仿真验证了基板预热对减小激光熔化沉积成形件残余应力及变形的重要作用;王凯[23]对基底预变形下激光熔化沉积成形单道多层薄壁件的应力和变形进行了仿真分析,证明了基板预变形可减小基底翘曲变形。笔者所在课题[24]研究发现,TC4成形使用分区“岛型”扫描可以有效降低最大翘曲量,而且“岛”的填充顺序优化也可显著改善翘曲变形。

    基于前述金属增材制造变形的研究综述,可以总结出如下规律:

    (1)零件与基板分离后,沿增材制造堆积方向(Z向)的翘曲是最主要的变形形式;

    (2)零件的变形与本身形状直接相关,且大体上呈现轴对称或中心对称,边缘/边角处的Z向变形量最大;

    (3)零件的变形量与材料性质、温度、堆积层数(厚度)、致密度等具有高度的相关性;

    (4)零件的变形量还受工艺参数的影响,包括激光功率、扫描速度、扫描路径、层厚、预热、缓冷、热处理等。

  • 2 金属增材制造残余应力的研究现状

    2

    增材制造的残余应力和变形常常结合在一起研究。与变形类似,金属零件内部的残余应力分布及演化也很复杂。Kruth[25]较早地对金属增材制造的残余应力开展研究。他发现:(1)沿着激光扫描方向的残余应力远大于垂直扫描方向;(2)残余应力从上至下呈“拉—压—拉”的分布状态;(3)工件高度、基板厚度、热处理等均对残余应力有较大影响。Bass[26]用SLM成形了空心和实心圆柱状Ni基625合金,并用中子衍射法测量了不同高度时轴向、径向和周向的残余应力。结果显示:(1)轴向和周向的残余应力在外表面为拉应力,而在内部则为压应力;(2)轴向残余应力值最大,而径向残余应力值最小;(3)在不同高度的对比中,成形件上表面的轴向和周向残余应力值最小;(4)空心圆柱体的残余应力值小于实心圆柱体。劳伦斯利弗莫尔国家实验室的Hodge[27]利用热力有限元仿真计算了L形结构的残余应力演化,发现残余应力沿深度方向有“拉—压—拉”的变化趋势,特别是增材制造件与基板分离后,残余压应力变得更加明显。对于L形构件,拐角周围的残余拉应力水平明显较高。

    Su rez[28]在304不锈钢表面激光熔覆Co基合金Stellite 6B,并利用能量散射XRD法测量了沿高度方向的残余应力分布(见图3),同样显示出“拉—压—拉”的分布特征。Brown[29]利用中子衍射较完整地展示出SLM件三向残余应力在平面和高度的变化,结果表明处于同一平面的应力分布状态基本一致,而沿高度方向则有明显的变化,特别是沿扫描方向的残余应力从上至下由拉应力变成压应力。此外,沿扫描方向的残余拉应力数值比其他方向的更大。Moat[30]利用轮廓法测量出沿高度方向的残余应力分布图,并用中子衍射法验证了轮廓法的测量结果(见图4)。结果显示,沿扫描方向的应力由拉应力逐渐变为压应力,最后再变为拉应力,而沿高度方向的残余应力则由轻微的拉应力逐渐演变为压应力。Ding[31]利用中子衍射和有限元仿真得出电弧增材制造1层、2层、3层的残余应力演化规律,随着堆积层的增加,上表面的、沿扫描方向的残余拉应力稍微减少,其他方向的残余应力并未显示出明显的变化。Mukherjee[32]利用有限元仿真出薄壁堆积2层和10层后的残余应力对比,其中明显可见随着堆积层数增加,压应力区域越来越大,而“墙脚”处出现了最大残余拉应力。

    图3
                            XRD测量的沿高度方向的残余应力分布[28]

    图3 XRD测量的沿高度方向的残余应力分[28]

    Fig.3 Residual stresses in the Z direction measured by XRD[28]

    图4
                            中子衍射法测量残余应力分布[30]

    图4 中子衍射法测量残余应力分[30]

    Fig.4 Residual stress maps created from neutron diffraction measurements[30]

    从工艺上分析,Alessandro[33]用深孔法准确地测量了选区激光熔化AlSi10Mg沿上表面向下1 mm深度的残余应力值,并发现去应力退火可以有效地降低残余应力水平。Aggarangsi[34]利用热应力有限元仿真发现,基板预热至673 K,最大残余拉应力的值可以降低18%。Bailey[35]用剥层XRD法测量了激光熔化沉积H13钢的残余应力,认为较多体积分数的马氏体导致了上表面压缩残余应力的产生。Szost[36]对比了激光熔化沉积和电弧增材制造件的残余应力状态,发现两种工艺成形件的三向残余应力分布规律基本一致,电弧增材件的最大拉应力数值略高于激光熔化沉积件。Sealy和Kalentics等利用激光冲击强化技术将金属增材制造零件上部的残余拉应力转变为有益的压应力,有效地增强了增材制造部件的疲劳性[37,38]。Martina[39]在弧焊增材后利用滚轮滚压,大幅降低了成形件残余拉应力水平。Parry[40]研究了扫描,策略对残余应力值的影响,结果显示变方向扫描,一定程度上可以减少残余拉应力,但效果并不显著。

    根据上述研究结果,可以得出如下规律:

    (1)金属增材制造零件的最大残余应力主要沿着激光扫描方向(X向),该方向的应力沿着零件高度呈“拉—压—拉”的分布状态;

    (2)残余应力沿堆积高度方向(Z向)和垂直扫描方向(Y向)数值均较小,且多以压应力为主;

    (3)残余应力受结构形式的影响较大,长方体、圆柱体、L形等均有明显差别;

    (4)残余应力受激光工艺参数和扫描方式的影响较小,而后处理(如热处理、滚压、激光冲击强化等)可有效降低残余应力。

  • 3 “约束力”概念

    3

    针对金属增材制造的变形及残余应力,Xie[41]提出了一种“约束力”的概念,如图5所示。假设激光沉积的长度为2×ld。当其冷却时,如果周围没有约束,沉积长度会收缩Δld。然而,金属增材制造过程中,沉积层还会受到基板的约束,最终沉积层的收缩长度限制为Δls。沉积层受到基板的约束力可假设为Fds。基于上述假设建立的结构静力学有限元模型,对基板的中心面设为固定约束,在沉积层的投影面上施加一个作用力Fds。仿真结果显示,结构静力学仿真中的变形形式与试验测量结果基本一致。从应力的角度看,结构静力学仿真中基板上表面受到约束力的作用,基板的上部受到压应力,下部则受到拉应力。XRD残余应力测试的结果显示,基板沿扫描方向的残余应力呈“拉—压—拉”的分布趋势。“约束力”的提出在一定程度上可以阐明金属增材制造变形产生和残余应力分布机制,即增材制造中变形和残余应力是由约束力产生的两方面结果,此两者之间为共生关系。

    图5
                            “约束力”假设

    图5 “约束力”假设

    Fig.5 Assumption of the constraining force

  • 4 结 论

    4

    金属增材制造中变形及残余应力的规律十分复杂,一般情况下:变形以Z向翘曲为主,结构边缘的翘曲变形量最大;残余应力则通常是沿长度方向最大,但会呈现出沿高度方向“拉—压—拉”的变化规律。“约束力”概念的提出可较好地解释金属增材制造变形及残余应力的产生、分布和演化规律。

  • 参考文献

    • 1

      李涤尘, 田小永, 王永信,等. 增材制造技术的发展[J].电加工与模具, 2012(A1):20-22.

      LI Dichen, TIAN Xiaoyong,WANG Yongxin,et al. Developments of additive manufacturing technology[J]. Electromachining & Mould, 2012(A1):20-22.

    • 2

      MELCHELS F P W, DOMINGOS M A N, KLEIN T J, et al. Additive manufacturing of tissues and organs[J]. Progress in Polymer Science, 2012, 37(8):1079-1104.

    • 3

      BUCHBINDER D, SCHLEIFENBAUM H, HEID-RICH S, et al. High power selective laser melting (HP SLM) of aluminum parts[J]. Physics Procedia, 2011, 12:271-278.

    • 4

      BAUFELD B, VAN DER BIEST O, GAULT R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties[J]. Materials & Design, 2010, 31:106-111.

    • 5

      MARIMUTHU S, CLARK D, ALLEN J, et al. Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero‑engine component[J]. Proceedings of the Institution of Mechnical Engineers, Part C, 2012: 227(9):1987-1999.

    • 6

      CAO J, GHARGHOURI M A, NASH P. Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates[J]. Journal of Materials Processing Technology, 2016, 237:409-419.

    • 7

      DUNBAR A J, DENLINGER E R, HEIGEL J, et al. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, Part A, 2016,12: 25-30.

    • 8

      BIEGLER M, GRAF B, RETHMEIER M. In‑situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations[J]. Additive Manufacturing, 2018, 20:101-110.

    • 9

      AMANDA S W, DONALD W B, MUKUL K, et al. An experimental investigation into additive manufacturing-induced residual stresses in 316L stain-less steel[J]. Metallurgical and Materials Transactions A, 2014, 45(13):6260-6270.

    • 10

      KRUTH J P, DECKERS J, YASA E, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method[J]. Proceedings of the Inst-itution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(6):980-991.

    • 11

      LI C, LIU J F, FANG X Y, et al. Efficient predictive model of part distortion and residual stress in selective laser melting[J]. Additive Manufacturing, 2017, 17:157-168.

    • 12

      BUCHBINDER D, MEINERS W, PIRCH N, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. Journal of Laser Applications, 2014, 26(1):012004.

    • 13

      PRABHAKAR P, SAMES W J, DEHOFF R, et al. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718[J].Additive Manufacturing, 2015,7:83-91.

    • 14

      GHASRI-KHOUZANI M, PENG H, ROGGE R, et al. Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions[J]. Materials Science and Engineering: A, 2017, 707:689-700.

    • 15

      祝彬彬. 选择性激光熔化金属零件翘曲变形的研究[D].杭州:浙江工业大学,2017.

      ZHU Binbin. Studies on distortions of metal parts in selective laser melting[D]. Hangzhou:Zhejiang University of Technology,2017.

    • 16

      DENLINGER E R, HEIGEL J C, MICHALERIS P, et al. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys[J]. Journal of Materials Processing Technology, 2015, 215:123-131.

    • 17

      ZIELINSKI J, MINDT H W, DÜCHTING J, et al. Numerical and experimental study of Ti6Al4V components manufactured using powder bed fusion additive manufacturing[J]. JOM, 2017, 69(12):2711-2718.

    • 18

      MUGWAGWA L, DIMITROV D, MATOPE S, et al. Influence of process parameters on residual stress related distortions in selective laser melting[J]. Procedia Manufacturing, 2018, 21:92-99.

    • 19

      KRUTH J P, FROYEN L, VAN VAERENBER-GH J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/2/3):616-622.

    • 20

      NICKEL A H, BARNETT D M, PRINZ F B. Thermal stresses and deposition patterns in layered manufacturing[J]. Materials Science and Engineering: A, 2001, 317(1/2):59-64.

    • 21

      GAO M, WANG Z M, LI X Y, et al. The effect of deposition patterns on the distortion of substrates during direct laser fabrication[J]. ASME:Journal of Engineering Materials Technology, 2013,135(3):034502-01-034502-6.

    • 22

      ZHANG K, WANG S, LIU W, et al. Effects of substrate preheating on the thin-wall part built by laser metal deposition shaping[J]. Applied Surface Science, 2014, 317:839-855.

    • 23

      王凯, 杨海欧, 刘奋成,等. 基板预变形下激光立体成形直薄壁件应力和变形的有限元模拟[J]. 中国激光, 2012, 39(6):68-74.

      WANG Kai, YANG Haiou, LIU Fencheng, et al. Stress and deformation finite element method simulation of thin wall part with pre‑deformation substrate during laser solid forming[J] Chinese Journal of Lasers, 2012, 39(6):68-74.

    • 24

      YAN Hui, SHEN Lida, WANG Xiao, et al. Stress and distortion evaluation of the subarea scanning effect in direct laser-deposited Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1):915-926.

    • 25

      MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006,12(5):254-265.

    • 26

      BASS L, MILNER J, GNÄUPEL-HEROLD T, et al. Residual stress in additive manufactured nickel alloy 625 parts[J]. ASME: Journal of Manufacturing Science and Engineering, 2018, 140(6):061004-01-061004-11.

    • 27

      HODGE N E, FERENCZ R M, VIGNES R M. Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting[J]. Additive Manufacturing, 2016,12:159-168.

    • 28

      SUÁREZ A, AMADO J M, TOBAR M J, et al. Study of residual stresses generated inside laser cladded plates using FEM and diffraction of synchrotron radiation[J]. Surface and Coatings Tech-nology, 2010, 204(12/13):1983-1988.

    • 29

      BROWN D W, BERNARDIN J D, CARPENTER J S, et al. Neutron diffraction measurements of residual stress in additively manufactured stainless steel[J]. Materials Science and Engineering: A, 2016, 678:291-298.

    • 30

      MOAT R J, PINKERTON A J, LI L, et al. Residual stresses in laser direct metal deposited waspaloy[J]. Materials Science and Engineering: A, 2011, 528(6):2288-2298.

    • 31

      DING J, COLEGROVE P, MEHNEN J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12):3315-3322.

    • 32

      MUKHERJEE T, ZUBACK J S, ZHANG W, et al. Residual stresses and distortion in additively manufactured compositionally graded and dissimilar joints[J]. Computational Materials Science, 2018, 143:325-337.

    • 33

      ALESSANDRO S, ELEONORA A, LUCA I, et al. Experimental analysis of residual stresses on AlSi10Mg parts produced by means of selective laser melting (SLM) [J]. Procedia CIRP, 2017, 62:458-463.

    • 34

      AGGARANGSI P, BEUTH J L. Localized preheating approaches for reducing residual stress in additive manufacturing[C]//Proceedings of the SFF Symposium. Austin:

      s.n.], 2006:709-720.

    • 35

      BAILEY N S, KATINAS C, SHIN Y C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses[J]. Journal of Materials Processing Technology, 2017, 247:223-233.

    • 36

      SZOST B A, TERZI S, MARTINA F, et al. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials & Design, 2016, 89:559-567.

    • 37

      SEALY M, MADIREDDY G, LI C, et al. Finite element modeling of hybrid additive manufacturing by laser shock peening[C]//Solid Freeform Fabrication Symposium(SFF). Austin, Tx:

      s.n.], 2016:306-316.

    • 38

      KALENTICS N, BOILLAT E, PEYRE P, et al. Tailoring residual stress profile of selective laser melted parts by laser shock peening[J]. Additive Manufacturing, 2017, 16:90-97.

    • 39

      MARTINA F, ROY M J, SZOST B A, et al. Residual stress of as-deposited and rolled wire+ arc additive manufacturing Ti-6Al-4V components[J]. Materials Science and Technology, 2016, 32(14):1439-1448.

    • 40

      PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufac-turing, 2016, 12:1-15.

    • 41

      XIE D Q, ZHAO J F, LIANG H X, et al. Assumption of constraining force to explain distortion in laser additive manufacturing[J]. Materials, 2018, 11(11):2327.

赵剑峰

机 构:南京航空航天大学机电学院,南京,210016

Affiliation:College of Mechanical and Electric Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China

角 色:通讯作者

Role:Corresponding author

邮 箱:zhaojf@nuaa.edu.cn

作者简介:赵剑峰,E-mail:zhaojf@nuaa.edu.cn。

作者简介:赵剑峰,男,教授,博士生导师,主要研究方向:增材制造,激光加工,纳米材料。已发表论文100余篇,授权发明专利3项。

谢德巧

机 构:南京航空航天大学机电学院,南京,210016

Affiliation:College of Mechanical and Electric Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China

梁绘昕

机 构:南京航空航天大学机电学院,南京,210016

Affiliation:College of Mechanical and Electric Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China

肖猛

机 构:南京先进激光技术研究院,南京, 210038

Affiliation:Nanjing Institute of Advanced Laser Technology, Nanjing, 210038, China

沈理达

机 构:南京航空航天大学机电学院,南京,210016

Affiliation:College of Mechanical and Electric Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China

田宗军

机 构:南京航空航天大学机电学院,南京,210016

Affiliation:College of Mechanical and Electric Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China

胥橙庭

角 色:中文编辑

Role:Editor

html/njhkht/201901001/alternativeImage/2e47e2eb-d273-444a-856c-e3d171642d87-F001.jpg
html/njhkht/201901001/alternativeImage/2e47e2eb-d273-444a-856c-e3d171642d87-F002.jpg
html/njhkht/201901001/alternativeImage/2e47e2eb-d273-444a-856c-e3d171642d87-F003.jpg
html/njhkht/201901001/alternativeImage/2e47e2eb-d273-444a-856c-e3d171642d87-F004.jpg
html/njhkht/201901001/alternativeImage/2e47e2eb-d273-444a-856c-e3d171642d87-F005.jpg

图1 利用DIC实时监测LMD过程薄壁零件的变[8]

Fig.1 Distortion of LMD part measured by DIC[8]

图2 SLM悬臂梁结构变[11]

Fig.2 Distortion of cantilever via SLM[11]

图3 XRD测量的沿高度方向的残余应力分[28]

Fig.3 Residual stresses in the Z direction measured by XRD[28]

图4 中子衍射法测量残余应力分[30]

Fig.4 Residual stress maps created from neutron diffraction measurements[30]

图5 “约束力”假设

Fig.5 Assumption of the constraining force

image /

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      李涤尘, 田小永, 王永信,等. 增材制造技术的发展[J].电加工与模具, 2012(A1):20-22.

      LI Dichen, TIAN Xiaoyong,WANG Yongxin,et al. Developments of additive manufacturing technology[J]. Electromachining & Mould, 2012(A1):20-22.

    • 2

      MELCHELS F P W, DOMINGOS M A N, KLEIN T J, et al. Additive manufacturing of tissues and organs[J]. Progress in Polymer Science, 2012, 37(8):1079-1104.

    • 3

      BUCHBINDER D, SCHLEIFENBAUM H, HEID-RICH S, et al. High power selective laser melting (HP SLM) of aluminum parts[J]. Physics Procedia, 2011, 12:271-278.

    • 4

      BAUFELD B, VAN DER BIEST O, GAULT R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties[J]. Materials & Design, 2010, 31:106-111.

    • 5

      MARIMUTHU S, CLARK D, ALLEN J, et al. Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero‑engine component[J]. Proceedings of the Institution of Mechnical Engineers, Part C, 2012: 227(9):1987-1999.

    • 6

      CAO J, GHARGHOURI M A, NASH P. Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates[J]. Journal of Materials Processing Technology, 2016, 237:409-419.

    • 7

      DUNBAR A J, DENLINGER E R, HEIGEL J, et al. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, Part A, 2016,12: 25-30.

    • 8

      BIEGLER M, GRAF B, RETHMEIER M. In‑situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations[J]. Additive Manufacturing, 2018, 20:101-110.

    • 9

      AMANDA S W, DONALD W B, MUKUL K, et al. An experimental investigation into additive manufacturing-induced residual stresses in 316L stain-less steel[J]. Metallurgical and Materials Transactions A, 2014, 45(13):6260-6270.

    • 10

      KRUTH J P, DECKERS J, YASA E, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method[J]. Proceedings of the Inst-itution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(6):980-991.

    • 11

      LI C, LIU J F, FANG X Y, et al. Efficient predictive model of part distortion and residual stress in selective laser melting[J]. Additive Manufacturing, 2017, 17:157-168.

    • 12

      BUCHBINDER D, MEINERS W, PIRCH N, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. Journal of Laser Applications, 2014, 26(1):012004.

    • 13

      PRABHAKAR P, SAMES W J, DEHOFF R, et al. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718[J].Additive Manufacturing, 2015,7:83-91.

    • 14

      GHASRI-KHOUZANI M, PENG H, ROGGE R, et al. Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions[J]. Materials Science and Engineering: A, 2017, 707:689-700.

    • 15

      祝彬彬. 选择性激光熔化金属零件翘曲变形的研究[D].杭州:浙江工业大学,2017.

      ZHU Binbin. Studies on distortions of metal parts in selective laser melting[D]. Hangzhou:Zhejiang University of Technology,2017.

    • 16

      DENLINGER E R, HEIGEL J C, MICHALERIS P, et al. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys[J]. Journal of Materials Processing Technology, 2015, 215:123-131.

    • 17

      ZIELINSKI J, MINDT H W, DÜCHTING J, et al. Numerical and experimental study of Ti6Al4V components manufactured using powder bed fusion additive manufacturing[J]. JOM, 2017, 69(12):2711-2718.

    • 18

      MUGWAGWA L, DIMITROV D, MATOPE S, et al. Influence of process parameters on residual stress related distortions in selective laser melting[J]. Procedia Manufacturing, 2018, 21:92-99.

    • 19

      KRUTH J P, FROYEN L, VAN VAERENBER-GH J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/2/3):616-622.

    • 20

      NICKEL A H, BARNETT D M, PRINZ F B. Thermal stresses and deposition patterns in layered manufacturing[J]. Materials Science and Engineering: A, 2001, 317(1/2):59-64.

    • 21

      GAO M, WANG Z M, LI X Y, et al. The effect of deposition patterns on the distortion of substrates during direct laser fabrication[J]. ASME:Journal of Engineering Materials Technology, 2013,135(3):034502-01-034502-6.

    • 22

      ZHANG K, WANG S, LIU W, et al. Effects of substrate preheating on the thin-wall part built by laser metal deposition shaping[J]. Applied Surface Science, 2014, 317:839-855.

    • 23

      王凯, 杨海欧, 刘奋成,等. 基板预变形下激光立体成形直薄壁件应力和变形的有限元模拟[J]. 中国激光, 2012, 39(6):68-74.

      WANG Kai, YANG Haiou, LIU Fencheng, et al. Stress and deformation finite element method simulation of thin wall part with pre‑deformation substrate during laser solid forming[J] Chinese Journal of Lasers, 2012, 39(6):68-74.

    • 24

      YAN Hui, SHEN Lida, WANG Xiao, et al. Stress and distortion evaluation of the subarea scanning effect in direct laser-deposited Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1):915-926.

    • 25

      MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006,12(5):254-265.

    • 26

      BASS L, MILNER J, GNÄUPEL-HEROLD T, et al. Residual stress in additive manufactured nickel alloy 625 parts[J]. ASME: Journal of Manufacturing Science and Engineering, 2018, 140(6):061004-01-061004-11.

    • 27

      HODGE N E, FERENCZ R M, VIGNES R M. Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting[J]. Additive Manufacturing, 2016,12:159-168.

    • 28

      SUÁREZ A, AMADO J M, TOBAR M J, et al. Study of residual stresses generated inside laser cladded plates using FEM and diffraction of synchrotron radiation[J]. Surface and Coatings Tech-nology, 2010, 204(12/13):1983-1988.

    • 29

      BROWN D W, BERNARDIN J D, CARPENTER J S, et al. Neutron diffraction measurements of residual stress in additively manufactured stainless steel[J]. Materials Science and Engineering: A, 2016, 678:291-298.

    • 30

      MOAT R J, PINKERTON A J, LI L, et al. Residual stresses in laser direct metal deposited waspaloy[J]. Materials Science and Engineering: A, 2011, 528(6):2288-2298.

    • 31

      DING J, COLEGROVE P, MEHNEN J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12):3315-3322.

    • 32

      MUKHERJEE T, ZUBACK J S, ZHANG W, et al. Residual stresses and distortion in additively manufactured compositionally graded and dissimilar joints[J]. Computational Materials Science, 2018, 143:325-337.

    • 33

      ALESSANDRO S, ELEONORA A, LUCA I, et al. Experimental analysis of residual stresses on AlSi10Mg parts produced by means of selective laser melting (SLM) [J]. Procedia CIRP, 2017, 62:458-463.

    • 34

      AGGARANGSI P, BEUTH J L. Localized preheating approaches for reducing residual stress in additive manufacturing[C]//Proceedings of the SFF Symposium. Austin:

      s.n.], 2006:709-720.

    • 35

      BAILEY N S, KATINAS C, SHIN Y C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses[J]. Journal of Materials Processing Technology, 2017, 247:223-233.

    • 36

      SZOST B A, TERZI S, MARTINA F, et al. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials & Design, 2016, 89:559-567.

    • 37

      SEALY M, MADIREDDY G, LI C, et al. Finite element modeling of hybrid additive manufacturing by laser shock peening[C]//Solid Freeform Fabrication Symposium(SFF). Austin, Tx:

      s.n.], 2016:306-316.

    • 38

      KALENTICS N, BOILLAT E, PEYRE P, et al. Tailoring residual stress profile of selective laser melted parts by laser shock peening[J]. Additive Manufacturing, 2017, 16:90-97.

    • 39

      MARTINA F, ROY M J, SZOST B A, et al. Residual stress of as-deposited and rolled wire+ arc additive manufacturing Ti-6Al-4V components[J]. Materials Science and Technology, 2016, 32(14):1439-1448.

    • 40

      PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufac-turing, 2016, 12:1-15.

    • 41

      XIE D Q, ZHAO J F, LIANG H X, et al. Assumption of constraining force to explain distortion in laser additive manufacturing[J]. Materials, 2018, 11(11):2327.

  • 您是第位访问者
    网站版权 © 南京航空航天大学学报
    技术支持:北京勤云科技发展有限公司