基于改进人工蜂群算法的无人飞行器路径协同规划
DOI:
CSTR:
作者:
作者单位:

1.南京航空航天大学自动化学院,南京 211106;2.上海机电工程研究所,上海 201109

作者简介:

通讯作者:

中图分类号:

基金项目:


Path Cooperative Planning for Unmanned Aerial Vehicles Based on Improved Artificial Bee Colony Algorithm
Author:
Affiliation:

1.College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 ; 2. Shanghai Institute of Mechanical and Electrical Engineering, Shanghai 201109

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决空战场景下的高亚音速无人飞行器(Unmanned aerial vehicle,UAV)的路径规划问题,提出一种改进的人工蜂群算法(Improved artificial bee colony algorithm,IABC)。首先,综合考虑三维空间障碍与无人飞行器路径规划的协同问题,建立作战场景模型与目标函数;其次,在雇佣蜂阶段引入了粒子群算法(Particle Swarm Optimization,PSO)降低搜索的盲目性,增强算法的搜索能力;最后,在观察蜂阶段基于动态贪婪准则对迭代初期的蜜源进行局部平滑处理,进一步提升算法的收敛速度。为了验证算法有效性,对算法进行了仿真对比实验。仿真实验表明,IABC算法继承了ABC与PSO算法的搜索优点,相较ABC算法,平均算法收敛速度提升47.83%,算法收敛精度平均提升53.49%。

    Abstract:

    To solve the path planning problem of high-subsonic unmanned aerial vehicles (UAVs) in air combat scenarios, an improved artificial bee colony algorithm (IABC) is proposed. Firstly, by comprehensively considering the obstacles in three-dimensional space and the coordination problem of UAV’s path planning, a combat scenario model and an objective function are established. Secondly, in the employed bee stage, the Particle Swarm Optimization (PSO) algorithm is introduced to reduce the blindness while searching and enhance the search ability of the algorithm. Finally, in the onlooker bee stage, local smoothing processing is carried out on the food sources in the early stage of iteration based on the dynamic greedy criterion, which further improves the convergence speed of the algorithm. In order to verify the effectiveness of the algorithm, a simulation comparison experiment on the algorithm is conducted. The simulation experiment shows that the IABC algorithm inherits the search advantages of the ABC and PSO algorithms. Compared with the ABC algorithm, the average convergence speed of the algorithm is increased by 47.83%, and the average convergence accuracy of the algorithm is increased by 53.49%.

    参考文献
    相似文献
    引证文献
引用本文

马梓元,刘伟鹏,胡春朝,龚华军,王新华.基于改进人工蜂群算法的无人飞行器路径协同规划[J].南京航空航天大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司