基于大语言模型的集群协同决策研究
DOI:
CSTR:
作者:
作者单位:

1.浙江大学电气工程学院;2.1、中国航空工业集团公司成都飞机设计研究所 2、空天飞行器技术航空科技重点实验室;3.中国航空工业集团公司成都飞机设计研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)(U2441205)


Research on Swarm Operations Decision-Making based on Large Language Models
Author:
Affiliation:

1.College of Electrical Engineering, Zhejiang University;2.1、CHENGDU Aircraft Design and Research Institute 2、Aviation Key Laboratory of Science and Technology on Aerospace Vehicle;3.CHENGDU Aircraft Design and Research Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大规模动态作业环境中多域协同决策的复杂性与实时性挑战,提出了基于大语言模型的集群协同决策框架(Courses of Action-Large Language Models,COA-LLM),通过提示词工程、环境态势文本化与多级指令解析,构建了"感知-决策-执行"闭环响应系统。突破了传统目标分配方法仅能处理离散任务的限制,实现了离散任务分配与连续空间决策的统一。最终,在仿真系统中构建了集群协同场景,使用了GPT与DeepSeek等通用大模型,并与其他基于优化算法和机器学习的算法进行了对比实验,实验结果证明了COA-LLM框架的可行性和有效性,框架的输入灵活性与输出可解释性,为智能指控系统的发展提供了新范式。

    Abstract:

    To address the complexity and real-time challenges of multi-domain collaborative decision-making in large-scale dynamic environment, a swarm cooperation decision-making framework based on large language models, named Courses of Action-Large Language Models (COA-LLM), is proposed. By leveraging prompt engineering, textual conversion of environment situations, and multi-level instruction parsing, a "perception-decision-execution" closed-loop response system is constructed. This framework overcomes the limitations of traditional target allocation methods, which are restricted to handling discrete tasks, and achieves the unification of discrete task allocation and continuous spatial decision-making. Finally, a swarm cooperation scenario is built in a simulation system, where general-purpose large models such as GPT and DeepSeek are employed. Comparative experiments are conducted against algorithms based on optimization and machine learning. The experimental results demonstrate the feasibility and effectiveness of the COA-LLM framework, highlighting its input flexibility and output interpretability, which provides a new paradigm for the development of intelligent command and control systems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-10
  • 最后修改日期:2025-05-09
  • 录用日期:
  • 在线发布日期: 2025-05-22
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司