可正交旋转的二维切割排样问题研究:基于启发式分组策略
CSTR:
作者:
作者单位:

1.空军工程大学装备管理与无人机工程学院, 西安 710051;2.中国民航大学空中交通管理学院, 天津 300300

作者简介:

通讯作者:

徐吉辉,男,教授,博士生导师,E-mail:1241775743@qq.com。

中图分类号:

O221;TP391.72;V271.2

基金项目:

国家自然科学基金项目(72461013,52272356)。


A Study on Orthogonally Rotatable Two-Dimensional Cutting Stock Problem: Heuristic Grouping Strategy
Author:
Affiliation:

1.Equipment Management and Unmanned Aerial Vehicle Engineering College, Air Force Engineering University, Xi’an 710051, China;2.College of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    飞机货舱中非集装器的配载是重要的运输环节,而如何保障非集装器的配载,是亟须研究的重要内容。其中二维矩形切割排样问题是解决非集装器运输的重要理论方法。二维矩形切割排样理论在原材料切割、装箱等问题中有着广泛应用,但尚无很好的求解算法。该方法会因求解速度而拖累整个实际生产作业进度。因此,本文提出了二维切割排样的混合整数线性规划(Mixed-integer linear programming, MILP)模型,模型目标是以矩形板面积利用率和切割排样价值最大为目标,模型考虑了不超边界、不重叠、可正交旋转等限制。设计了启发式分组策略的求解算法:首先基于启发式把矩形块分组为不同组别的小矩形块,降低变量和计算规模;其次,采用混合整数规划精确算法对每个小矩形块进行切割排样。以经典Benchmark实验数据为例,将Gurobi分组与Gurobi、CutLogic2D、基于遗传算法和最低水平线算法的混合算法对比。实验结果表明,CutLogic2D综合求解质量和速度较好;Gurobi分组方法是一种启发式算法,总体上要稍差于CutLogic2D;遗传算法和最低水平线算法因是启发式算法且未使用分组策略,和Gurobi分别在部分算例上求解时间相对较长,达到了7 200 s,这是无法接受的。

    Abstract:

    The loading of non-unit load device in aircraft holds is crucial to air cargo transportation, and ensuring efficient loading of such cargo remains an important and urgent problem. Among the theoretical approaches to address this problem, the two-dimensional rectangular cutting stock problem serves as a key methodology. Although the two-dimensional rectangular cutting stock theory is widely applied to problems such as raw material cutting and packing, the lack of efficient solving algorithms hinders practical implementation, as their computational speed often impedes the whole production procedure. Therefore, this paper proposes a mixed-integer linear programming (MILP) model for the two-dimensional cutting stock problem, aiming to maximize both the utilization rate of the rectangular plane area and the value of the cutting stock. The model incorporates constraints such as boundary adherence, non-overlapping, and orthogonal rotation. A heuristic grouping strategy-based solving algorithm is designed. First, heuristic methods are used to partition the rectangular items into smaller subsets, thereby reducing the variable scale and computational complexity. Second, an exact MILP algorithm is employed to solve the cutting stock problem for each subset. Using classic Benchmark experimental data, the proposed Gurobi grouping method is compared with Gurobi, CutLogic2D, and a hybrid algorithm combining genetic algorithms and the lowest horizontal line algorithm. The experimental results show that CutLogic2D performs well in terms of both solution quality and speed. The Gurobi grouping method, as a heuristic algorithm, generally shows slightly inferior proformance than CutLogic2D. In contrast, the genetic algorithm and the lowest horizontal line algorithm, as the heuristic methods without grouping strategies, along with Gurobi, exhibit relatively long solving times in some cases, reaching up to 7 200 s, which is unacceptable for practical applications.

    参考文献
    相似文献
    引证文献
引用本文

李云飞,徐吉辉,赵向领.可正交旋转的二维切割排样问题研究:基于启发式分组策略[J].南京航空航天大学学报,2025,57(5):984-998

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-16
  • 最后修改日期:2025-08-18
  • 录用日期:
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司