基于LSTM的舰载靶机适发窗口预报方法研究
CSTR:
作者:
作者单位:

1.南京航空航天大学航空学院,南京 210016;2.中国融通集团第六十研究所,南京 210016;3.海装驻南京地区第四军事代表室,南京 211100;4.中国航空工业集团公司金城南京机电液压工程研究中心, 南京 211106;5.航空机电系统综合航空科技重点实验室,南京 211106

作者简介:

通讯作者:

钱征华,男,教授,博士生导师,E-mail: qianzh@nuaa.edu.cn。

中图分类号:

TP391

基金项目:

国家重点研发计划(2023YFEO111000);国家自然科学基金(12172171,12372151,12061131013);中央高校基本科研业务费资助项目(NS2022011);航空航天结构力学及控制全国重点实验室自主研究课题(MCMS-I-0522G01);江苏省自然科学基金(BK20211176);江苏省双创计划资助项目(JSSCBS20210166);航空科学基金(20200028052011)。


Research on Suitable Launch Window Prediction Method for Shipborne Target Aircraft Based on LSTM
Author:
Affiliation:

1.College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;2.The 60th Research Institute of CRTC, Nanjing 210016, China;3.The Fourth Military Representative Office of the Naval Armament Department Stationed in Nanjing, Nanjing 211100, China;4.AVIC Jincheng Nanjing Engineering Institute of Aircraft System, Nanjing 211106, China;5.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高舰载靶机发射过程中船舶运动姿态的预测精度,使用基于长短期记忆(Long short-term memory, LSTM)网络的船舶姿态预测方法。针对长时预测导致的误差累计问题,提出了改进窗口滑动法,通过对每次预测结果进行变分模态分解(Variational mode decomposition, VMD)滤波,消除累积误差引起的预测结果振荡。通过有限元仿真及自主设计的船模实验平台开展波浪水池试验,采集横摇、纵摇、垂荡等关键姿态参数的时序数据。实验设置涵盖1级至5级典型海况条件。实验结果表明,该模型在升沉位移、横摇角及纵摇角预测中,均方误差(Mean squared error, MSE)最大降幅可达99.4%,MAPE降低至2.11%,验证了其工程应用的有效性。研究成果可为舰载靶机发射引导系统提供高精度的船舶运动态势预判,对提升着舰安全性具有重要工程价值。

    Abstract:

    In order to improve the prediction accuracy of the ship’s motion attitude during the launch of the carrier-based target drone, this paper uses a ship attitude prediction method based on the long short-term memory (LSTM) network. In view of the error accumulation problem caused by long-term prediction, this paper proposes an improved window sliding method, which eliminates the prediction result oscillation caused by the cumulative error by filtering each prediction result with variational mode decomposition (VMD). The wave tank test was carried out through finite element simulation and a self-designed ship model experimental platform to collect time series data of key attitude parameters such as roll, pitch, and heave. The experimental setting covers typical sea conditions from level 1 to level 5. The experiment shows that the maximum mean squared error(MSE) reduction of the model in the prediction of heave displacement, roll angle and pitch angle is 99.4%, and the MAPE is reduced to 2.11%, which verifies the effectiveness of its engineering application. The research results can provide high-precision ship motion situation prediction for the launch guidance system of the carrier-based target drone, which has important engineering value for improving landing safety.

    参考文献
    相似文献
    引证文献
引用本文

戴勇,马智勇,刘海瑞,刘浩,章雨驰,俞梦冉,李鹏,钱征华,李彤韡.基于LSTM的舰载靶机适发窗口预报方法研究[J].南京航空航天大学学报,2025,57(5):976-983

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-05
  • 最后修改日期:2025-06-04
  • 录用日期:
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司