基于深度学习的时间序列预测方法综述
CSTR:
作者:
作者单位:

1.陆军工程大学指挥控制工程学院,南京 210007;2.陆军装甲兵学院信息通信系,北京 100072

作者简介:

潘志松,男,教授,主要从事模式识别与机器学习方面的研究,E-mail: hotpzs@hotmail.com。

通讯作者:

韩笑,女,讲师,E-mail:h.x.good@163.com。

中图分类号:

TP391

基金项目:

国家自然科学基金(62076251);陆军工程大学基础学科科研基金科研课题培育项目(KYJBJKQTZK23003)。


Review of Time Series Forecasting Methods Based on Deep Learning
Author:
Affiliation:

1.College of Command and Control Engineering, Army Engineering University of PLA, Nanjing 210007, China;2.Department of Information Communication, Army Academy of Armored Forces, Beijing 100072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习因能够更好地捕捉时间序列数据中的复杂关系和模式而成为解决时间序列预测的有效方法。典型的做法是单独地学习这些任务,为每个任务训练1个单独的神经网络,在时间序列预测中取得了丰硕的成果。最近的多任务学习技术通过学习共享知识联合处理多个预测任务,在性能、计算和内存占用方面显示出了其优势。本文首先综述了以卷积神经网络、循环神经网络、注意力机制、Transformer和图神经网络为代表的时间序列预测深度模型,包括数据集、模型特点和性能;然后深入分析了深度多任务时间序列预测模型,按照参数共享方式和参数共享(交互)位置进行分类概述,并讨论了一些常见的多任务时间序列预测框架。最后对深度时间序列预测面临的问题和挑战进行了总结,并对未来研究趋势进行了展望。

    Abstract:

    Deep learning has emerged as an effective solution for time series forecasting due to its superior ability to capture complex relationships and patterns within temporal data. A typical approach involves learning these tasks individually and training a separate neural network for each task, which has yielded fruitful results in time series forecasting. Recent advances in multitask learning techniques have demonstrated their advantages in terms of performance, computation, and memory usage by jointly processing multiple prediction tasks through learning shared knowledge. This paper presents the first comprehensive review of methods for multitask time series forecasting. It begins by summarizing deep models for time series forecasting, represented by convolutional neural networks, recurrent neural networks, attention mechanisms, Transformer and graph neural networks, including datasets, model characteristics, and performance. Subsequently, an in-depth analysis of deep multitask time series forecasting models is conducted, categorizing them based on parameter sharing methods and the location of parameter sharing (or interaction), and discussing some common multitask time series forecasting frameworks. Finally, this paper summarizes the challenges faced by deep time series forecasting and offers insights into future research trends.

    参考文献
    相似文献
    引证文献
引用本文

潘志松,韩笑,黎维.基于深度学习的时间序列预测方法综述[J].南京航空航天大学学报,2025,57(5):799-821

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-18
  • 最后修改日期:2024-07-01
  • 录用日期:
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司