基于mRMR算法的脑电特征评价
CSTR:
作者:
作者单位:

1.南京航空航天大学民航学院,南京 210016;2.南京工程学院交通工程学院,南京 211167

作者简介:

通讯作者:

邵荃,男,教授,博士生导师,E-mail:shaoquan@nuaa.edu.cn。

中图分类号:

V7;R857.11

基金项目:

国家自然科学基金(52372315)。


EEG Characteristic Evaluation Based on mRMR Algorithm
Author:
Affiliation:

1.College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;2.School of Transportation Engineering, Nanjing Institute of Technology, Nanjing 211167, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于具有高时间分辨率、无创性,脑电(Electroencephalogram, EEG)信号被广泛应用于航空航天任务操作员的疲劳、脑力负荷分析等。针对EEG信号多通道且各通道内信息不完全相同的特性,提出了一种基于最小冗余最大相关性(Minimum redundancy maximum relevance, mRMR)算法的EEG特征评价技术。通过设置目标变量,计算各通道内EEG特征与目标变量的互信息量、特征在通道内部的冗余度,可对EEG特征的性能做出评价。进一步,获取管制员在不同脑力负荷下的EEG数据,对一系列EEG特征做出评价并与已有研究、特征在不同分类方式下的可分性进行对比,验证了该特征评价技术的有效性。与现有的技术相比,该技术避免了灰色关联分析法确定权重参数和灰色关联度的主观性、避免了分类器评价法的差异性。相较于已有的特征选择算法,考虑了通道内部信息的冗余,使得评价结果更为准确。相较于基于统计学的相关技术,该方法可对特征的性能做出定量的评价,以便对不同指标进行比较。最后,阐述了该评价方式疲劳程度分析、情绪识别等方面的应用。

    Abstract:

    Thanks to high temporal resolution and non-invasiveness,electroencephalogram(EEG) signals are widely used for fatigue and brain load analysis of aerospace mission operators. Since the EEG signals hold multi-channels and the information within each channel is not exactly the same, this paper proposes an EEG characteristic evaluation method based on the minimum redundancy maximum relevance(mRMR) algorithm. The performance of EEG characteristics can be evaluated by setting the target variables, calculating the amount of mutual information between the EEG characteristics and the target variable within each channel, as well as the redundancy of the characteristics within the channel. Further, the EEG data of controllers under different brain loads are acquired. A series of EEG characteristics are evaluated. The results are compared with those of the existing studies, and the separability of the characteristics under different classification methods are also analyzed. The effectiveness of the proposed evaluation method is verified. Compared with the existing studies, this method avoids the subjectivity of the grey correlation analysis method in determining weight parameters and grey correlation degree,as well as the discrepancy between different classifier evaluation methods. Compared to the existing characteristic selection algorithms, this method considers the redundancy of information within the channel and outputs more accurate results. Compared with the methods based on statistics, this method can quantitatively evaluate the performance of the characteristics in order to compare different indicators. Finally, the application of this method in terms of fatigue level analysis and emotion recognition is described.

    参考文献
    相似文献
    引证文献
引用本文

孙哲,李慧,邵荃,张军峰,贾萌.基于mRMR算法的脑电特征评价[J].南京航空航天大学学报,2025,57(3):580-588

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-12
  • 最后修改日期:2025-04-07
  • 录用日期:
  • 在线发布日期: 2025-06-20
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司