基于多策略改进蜣螂算法的三维无人机路径规划
CSTR:
作者:
作者单位:

1.安徽工程大学机械与汽车工程学院,芜湖 241000;2.长三角哈特机器人产业技术研究院,芜湖 241000

作者简介:

王紫益(2002-),男,安徽安庆人,硕士生,主要研究智能优化算法及其在路径规划中的应用(E-mail:2190645549@qq.com

通讯作者:

王雷,男,教授,硕士生导师,E-mail:wangdalei2000@126.com。

中图分类号:

TP301.6;V249

基金项目:

安徽省高校优秀拔尖人才培育项目(gxbjZD2022023);安徽省机器视觉检测与感知重点实验室开放基金(KLMVI-2024-HIT-15)。


3D Path Planning of UAV Based on Multi-strategy Improved Dung Beetle Algorithm
Author:
Affiliation:

1.School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China;2.Yangtze River Delta Hart Robot Industry Technology Research Institute, Wuhu 241000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的蜣螂算法在三维无人机(Unmanned aerial vehicle, UAV)路径规划中存在求解精度低、收敛速度慢及容易陷入局部最优等问题,提出了一种基于多策略改进的蜣螂算法(Multi-strategy improved dung beetle optimizer, MSIDBO)。该算法首先采用空间金字塔匹配(Spatial pyramid matching,SPM)混沌映射与反向学习策略进行种群初始化,以提高初始种群的多样性和质量。其次,引入改进后的边界收敛因子,以实现算法全局探索与局部搜索能力的平衡。然后,融合海鸥优化算法的攻击机制,以提升收敛速度和求解精度。最后,采用t-distribution差分变异策略,以提高算法跳出局部最优解的能力。将改进的蜣螂算法与其他的启发式算法和相关的改进算法进行基准函数测试,MSIDBO算法相较于其他启发式算法和改进算法,在收敛速度与精度方面表现突出;此外,将改进的蜣螂算法应用于三维无人机路径规划仿真,实验仿真结果表明在不同的场景下MSIDBO算法生成的路径代价函数值更小,路径质量更高,平稳性更佳。

    Abstract:

    Aiming at the problems of low accuracy, slow convergence and local optimality of traditional dung beetle algorithm in 3D unmanned aerial vehicle (UAV) path planning, a multi-strategy improved dung beetle optimizer (MSIDBO) is proposed. Firstly, spatial pyramid matching(SPM) chaotic mapping and reverse learning strategy are used to initialize the population to improve the diversity and quality of the initial population. Secondly, an improved boundary convergence factor is introduced to achieve the balance between global exploration and local search. Then, the attack mechanism of gull optimization algorithm is integrated to improve the convergence speed and solving accuracy. Finally, the t-distribution differential variation strategy is used to improve the ability of the algorithm to jump out of the local optimal solution. The improved Dung Beetle algorithm is compared with other heuristic algorithms and related improved algorithms by benchmark function test. Compared with other heuristic algorithms and improved algorithms, MSIDBO algorithm has outstanding performance in convergence speed and accuracy. In addition, the improved Dung Beetle algorithm is applied to 3D UAV path planning simulation. Experimental simulation results show that the path cost function generated by MSIDBO algorithm is smaller, the path quality is higher, and the stability is better under different scenarios.

    参考文献
    相似文献
    引证文献
引用本文

王紫益,王雷,徐浩然,张桐彬,夏强强.基于多策略改进蜣螂算法的三维无人机路径规划[J].南京航空航天大学学报,2025,57(3):475-486

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-12
  • 最后修改日期:2025-03-19
  • 录用日期:
  • 在线发布日期: 2025-06-20
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司