考虑结构柔性的大型仿生扑翼机动力学建模与飞行性能分析
作者:
作者单位:

1.哈尔滨工业大学(深圳)机电工程与自动化学院,深圳 518055;2.广东省智变机构与适应性机器人重点实验室,深圳 518055

通讯作者:

徐文福,男,教授,博士生导师,E-mail:wfxu@hit.edu.cn。

中图分类号:

TP242

基金项目:

国家自然科学基金(62233001);深圳市优秀科技创新人才培育项目(RCJC20200714114436040);深圳市基础研究重点项目(JCYJ20241202123724032)。


Dynamic Modeling and Flight Performance Analysis for Large Bionic Ornithopters Considering Structural Flexibility
Author:
Affiliation:

1.School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;2.Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Shenzhen 518055, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    大型仿生扑翼机(Large bionic ornithopters, LBOs)翅膀在扑动过程中会产生明显的柔性变形,气动特性复杂,其变形情况除受翅膀扑动影响外也与机体运动相关。本文通过耦合有限元方法和有限状态气动方法建立LBOs的翅膀三维气动弹性模型,并将该模型与通过凯恩方程法建立的多体动力学模型结合,搭建了LBOs的飞行动力学模型。该模型考虑了LBOs扑动过程中翅膀的柔性变形与机体运动的影响,能够计算LBOs前飞时的位置和姿态变化情况。通过该模型计算了LBOs前飞时的飞行状态,并与实际飞行实验数据做对比,结果表明该模型可以较好地模拟LBOs的飞行状态,验证了该模型的准确性。

    Abstract:

    The flapping wing of large bionic ornithopters (LBOs) has obvious flexible deformation during the flapping motion, which is difficult for aerodynamic analysis. The deformation is not only affected by the flapping motion, but also related to the body motion of LBOs. This paper establishes a three-dimensional aeroelastic model of the wings of LBOs by coupling the finite element method and the finite state aerodynamic method, and combines the multi-body dynamics model established by the Kane equation method to build the flight dynamics model of LBOs. This model considers the influence of the flexible wing deformation and the body motion during the flapping process of LBOs, and can calculate the position and attitude of LBOs during forward flight. The flight states of LBOs during forward flight are computed by this model and compared with actual flight experiment data. The results show that the model can simulate the flight state of LBOs well, verifying the model’s accuracy.

    参考文献
    [1] PHAN H V, PARK H C, FLOREANO D. Passive wing deployment and retraction in beetles and flapping microrobots[J]. Nature, 2024, 632: 1067-1072.
    [2] HELPS T, ROMERO C, TAGHAVI M,et al.Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping[J].Science Robotics, 2022, 7(63): eabi8189.
    [3] DUAN B, GUO C, LIU H. Aerodynamic analysis for a bat-like robot with a deformable flexible wing[J].Robotica, 2023, 41(1): 306-325.
    [4] 吉爱红,沈欢,李长龙,等.昆虫的扑翼轨迹及高升力机理[J].南京航空航天大学学报, 2018, 50(3): 284-294.JI Aihong, SHEN Huan, LI Changlong, et al. Flapping wing trajectory and lift mechanism of insects[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(3): 284-294.
    [5] 杨文青,郭越洋,董渊博,等.仿生柔性扑翼无人机流固耦合研究进展[J].航空学报, 2024, 45(17): 530069.YANG Wenqing, GUO Yueyang, DONG Yuanbo, et al. Research progress on fluid structure interaction of bionic flexible flapping wing UAV[J].Acta Aeronautica et Astronautica Sinica,2024, 45(17): 530069.
    [6] HONG G, KANEKO S, MITSUME N, et al. Robust fluid-structure interaction analysis for parametric study of flapping motion[J]. Finite Elements in Analysis and Design, 2021 (183/184): 103494.
    [7] 薛栋, 朱紫文, 宋笔锋,等. 仿鸟扑翼飞行器关键技术综述[J].航空学报, 2024, 45(22): 029984.XUE Dong, ZHU Ziwen, SONG Bifeng, et al. A review of key technologies of bird inspired flapping-wing micro aerial vehicles[J].Acta Aeronautica et Astronautica Sinica,2024,45(22): 029984.
    [8] SUN M, WANG J, XIONG Y. Dynamic flight stability of hovering insects[J]. Acta Mechanica Sinica, 2007, 23(3): 231-246.
    [9] BOLENDER M A. Rigid multi-body equations-of-motion for flapping wing MAVs using Kane’s equations[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Chicago, IL, USA: AIAA, 2009: 10-13.
    [10] YANG W, WANG L, SONG B. Dove: A biomimetic flapping-wing micro air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 70-84.
    [11] ORLOWSKI C T, GIRARD A R. Modeling and simulation of nonlinear dynamics of flapping wing micro air vehicles[J].AIAA Journal, 2011, 49(5): 969-981.
    [12] ZHONG S, XU W. Power modeling and experiment study of large flapping-wing flying robot during forward flight[J]. Applied Sciences, 2022, 12(6): 3176.
    [13] LIU G, WANG S, XU W. Flying state sensing and estimation method of large-scale bionic flapping wing flying robot[J]. Actuators 2022, 11(8): 213.
    [14] PETERS D A H, MONG‐CHE A, TORRERO A. A state-space airloads theory for flexible airfoils[J].Journal of the American Helicopter Society, 2007, 52(4): 329-342.
    [15] STANFORD B, BERAN P, KOBAYASHI M. Aeroelastic optimization of flapping wing venation: A cellular division approach[J].AIAA Journal, 2012, 50(4): 938-951.
    [16] 薛栋.结构参数和机体运动对扑翼性能的影响研究[D].西安:西北工业大学,2018.XUE Dong. The influence of structural parameters and body movement on the performance of flapping wing[D]. Xi’an: Northwestern Polytechnical University, 2018.
    [17] XUE D, SONG B, SONG W,et al.Computational simulation and free flight validation of body vibration of flapping-wing MAV in forward flight[J].Aerospace Science and Technology, 2019, 95: 105491.1-105491.15.
    [18] SI C, HAO L, SHIJUN G,et al.Unsteady aerodynamic model of flexible flapping wing[J].Aerospace Science and Technology, 2018, 80: 354-367.
    [19] LIU H, LIU J, DING Y, A three-dimensional elastic-plastic damage model for predicting the impact behaviour of fibre-reinforced polymer-matrix composites[J] Composites Part B: Engineering, 2020,201: 108389.
    [20] 彭程, 孙立国, 王衍洋, 等. 面向控制的仿鸽扑翼机纵向动力学建模与分析[J]. 北京航空航天大学学报, 2022, 48(12): 2510-2519.PENG Cheng, SUN Liguo, WANG Yanyang, et al. Control oriented longitudinal modeling and analysis of pigeon-like flapping-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2510-2519.
    [21] 黄子恒,陈菊,张志娟,等.多刚体动力学仿真的李群变分积分算法[J].动力学与控制学报,2022,20(1):8-17.HUANG Ziheng, CHEN Ju, ZHANG Zhijuan, et al. Lie group variational integratation for multi-rigid body system dynamic simulation[J]. Journal of Dynamics and Control, 2022, 20(1): 8-17.
    相似文献
    引证文献
引用本文

徐晖,潘尔振,徐文福,黄海林.考虑结构柔性的大型仿生扑翼机动力学建模与飞行性能分析[J].南京航空航天大学学报,2025,57(3):412-418

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-01
  • 最后修改日期:2025-05-01
  • 在线发布日期: 2025-06-20
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!