分布式推进旋翼飞行器回转颤振特性研究
作者:
作者单位:

中国直升机设计研究所,景德镇 333001

通讯作者:

程毅,男,工程师,E-mail:chengy012@avic.com。

中图分类号:

V214.1+1

基金项目:

直升机动力学全国重点实验室基金(2023-HA-LB-067-08)。


Research on Whirl-Flutter Characteristics of Distributed Propulsive Rotorcraft
Author:
Affiliation:

China Helicopter Research and Development Institute, Jingdezhen 333001, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | | | |
  • 文章评论
    摘要:

    针对高速前飞状态分布式推进旋翼飞行器存在的回转颤振动力学问题,提出了一种通用性强且快速高效分布式多旋翼/倾转机翼耦合气弹动力学分析方法。该方法基于中等变形梁理论,考虑旋翼和机翼间弹性、惯性耦合,采用基于CFD修正的片条理论,建立分布式多旋翼/倾转机翼气弹动力学分析模型,研究其前飞状态下的回转颤振特性。在证明了分析方法的准确性后,同时研究了耦合系统动力学参数(机翼、短舱和旋翼等)对飞行器回转颤振临界速度的影响。结果表明:系统先发生扭转失稳,后发生面内弯曲失稳,机翼扭矩刚度对系统临界颤振速度影响程度最大;其次是面外和面内弯曲刚度,其颤振运动的三维效应十分明显,呈现为机翼扭转和面内外弯曲模态耦合。在低速状态下将升力桨张开并提高旋翼数量能有效增加系统气弹稳定性,无铰式桨叶挥舞刚度对系统临界颤振影响不大,增大旋翼拉力和降低旋翼转速有利于提高系统临界颤振速度,而增加旋翼和短舱高度则会降低系统临界颤振速度。

    Abstract:

    Aiming at the problem of whirl-flutter dynamics of distributed propulsion rotorcraft in high-speed forward flight state, this paper proposes a highly versatile, fast and efficient distributed multi-rotor/tilt-wing coupled aeroelastic dynamics analysis method. Based on the theory of moderately deformed beams, this method takes into account the elastic and inertial coupling between the rotors and the wings. By using the strip theory corrected by CFD, a distributed multi-rotor/tilt-wing aeroelastic dynamics analysis model is established to study its whirl-flutter characteristics in the forward flight state. After proving the accuracy of the analysis method, this paper also studies the influence of the dynamic parameters of the coupled system (such as the wings, nacelles and rotors, etc.) on the critical whirl-flutter speed of the aircraft. The results show that the system first experiences torsional instability and then in-plane bending instability. The torsional stiffness of the wings has the greatest influence on the critical flutter speed of the system, followed by the out-of-plane and in-plane bending stiffness. The three-dimensional effect of the flutter motion is obvious, presenting as the coupling of the torsional and in-plane and out-of-plane bending modes of the wings. Opening the lift rotors and increasing the number of rotors at low speeds can effectively increase the aeroelastic stability of the system. The flapping stiffness of the hinge-less blades has little influence on the critical flutter of the system. Increasing the rotor thrust and reducing the rotor speed are beneficial to increasing the critical flutter speed of the system, while increasing the height of the rotors and nacelles will reduce the critical flutter speed of the system.

    参考文献
    [1] MURPHY P C, HATKE D B, AUBUCHON V V, et al. Preliminary steps in developing rapid aero modeling technology[C]//Proceedings of the AIAA SciTech 2020 Forum. [S.l.]: AIAA , 2020.
    [2] MURPHY P C, SIMMONS B M, HATKE D B. Rapid aero modeling for urban air mobility aircraft in wind-tunnel tests[C]//Proceedings of the AIAA SciTech 2021 Forum. [S.l.]: AIAA , 2021.
    [3] BORER N K, PATTERSON M D, VIKEN J K. Design and performance of the NASA sceptor distributed electric propulsion flight demonstrator[J]. AIAA Journal, 2016,30(1): 3920-3939.
    [4] PATTERSON M D, DASKILEWICZ M J, GERMAN B J. Conceptual design of electric aircraft with distributed propellers: Multidisciplinary analysis needs and aerodynamic modeling development[C]//Proceedings of the 52nd Aerospace Sciences Meeting. National Harbor, Maryland:AIAA, 2014.
    [5] DROANDI G, ZANOTTI A, GIBERTINI G. Experimental investigation of the rotor-wing aerodynamic interaction in a tiltwing aircraft in hover[J]. Aeronautical Journal, 2015,119(1215): 591-612.
    [6] MISIOROWSKI M, GANDHI F, ANUSONTI INTHRA P. Computational analysis of rotor-blown-wing for electric rotorcraft applications[J]. AIAA Journal, 2020, 58(5): 1-12.
    [7] DAVID G P, PATRICIA V D, JASIM A. A comparison of rotor disk modeling and blade-resolved CFD simulations for NASA’s tiltwing air taxi[C]//Proceedings of the Vertical Flight Society’s 79th Annual Forum & Technology Display. West Palm Beach, FL: The Vertical Flight Society, 2023.
    [8] JOHNSON W, SILVA C. NASA concept vehicles and the engineering of advanced air mobility aircraft[J]. The Aeronautical Journal, 2022,126(1295): 59-91.
    [9] HARTMANN P, MEYER C, MOORMANN D. Unified approach for velocity control and flight state process of unmanned tiltwing aircraft[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. [S.l.]: AIAA, 2016.
    [10] CHAUHAN S S, MARTINS J R. Tilt-wing eVTOL takeoff trajectory optimization[J]. Journal of Aircraft, 2019, 57(1): 1-20.
    [11] SETTLE T B, KIDD D L. Evolution and test history of the V-22 0.2-scale aeroelastic model[C]//Proceedings of the American Helicopter Society National Specialists’ Meeting on Rotorcraft Dynamics. Arlington, Texas: AHS, 1989.
    [12] SLABY J, SMITH E. Aeroelastic stability of folding tiltrotor aircraftin cruise flight with composite wings[C]//Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. [S.l.]: AIAA, 2011.
    [13] NOLL T E, BROWN J M, PEREZ M E. Investigation of the helios prototype aircraft mishap[R]. [S.l.]: NASA, 2004.
    [14] 杨龙. 大展弦比太阳能无人机结构动力学研究[D]. 长沙: 国防科学技术大学,2013.YANG Long. Study on structural dynamic of high aspect ratio solar unmanned aerial vehicle[D]. Changsha: National University of Defense Technology, 2013.
    [15] ROTHHAAR P M, MURPHY P C, BACON B J. NASA langley distributed propulsion VTOL tilt-wing aircraft testing, modeling, simulation, control, and flight test development[C]//Proceedings of the AIAA Aviation Technology, Integration and Operations Conference. [S.l.]: AIAA, 2014.
    [16] MURPHY P C. Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Kissimmee, Florida: AIAA, 2015.
    [17] GEUTHER S C, NORTH D D, BUSAN R C. Investigation of a tandem tilt-wing VTOL aircraft in the NASA Langley 12-Foot Low-Speed Tunnel: NASA-TM—2020-5003178[R]. [S.l.]:NASA, 2020.
    [18] SIMMONS B M, MURPHY P C. Aero-propulsive modeling for tilt-wing, distributed propulsion aircraft using wind tunnel data[J]. Journal of Aircraft, 2022,59(9): 1-17.
    [19] DEDE S T, TATAR A, REZGUI D, et al. Aeroelastic analysis of distributed electric propulsion flexible wings[C]//Proceedings of the International Forum on Aeroelasticity and Structural Dynamics.Hague, Netherlands: [s.n.], 2024.
    [20] STOLL A, MIKIé G V. Transition performance of tilt propeller aicraft[C]//Proceedings of the Vertical Flight Society’s 78th Annual Forum and Technology Display. Ft. Worth, Texas, USA: [s.n.], 2022.
    [21] LIU J F, MA D L, LUO J. Wind-tunnel testing on tilting flight mode characteristics of a small distributed propulsion VTOL tilt-wing aircraft[J]. Helicopter Technique, 2023, 215(1):29-33.
    [22] 付志超,陈占军,刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学,2017,34(4):231-240.FU Zhichao, CHEN Zhanjun, LIU Ziqiang. Geometric nonlinear aeroelastic behavior of high aspect ratio wings[J]. Engineering Mechanics, 2017, 34(4):231-240.
    [23] ACREE C W, PEYRAN R J. Rotor design options for improving XV-15 whirl-flutter stability margins:NASA TP—2004-212262[R]. California: AMES Research Center, 2004.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程毅,余智豪,王司文,赵金瑞.分布式推进旋翼飞行器回转颤振特性研究[J].南京航空航天大学学报,2025,57(2):243-251

复制
分享
文章指标
  • 点击次数:108
  • 下载次数: 144
  • HTML阅读次数: 110
  • 引用次数: 0
历史
  • 收稿日期:2024-08-17
  • 最后修改日期:2024-10-08
  • 在线发布日期: 2025-04-25
文章二维码
您是第6972105位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!