直升机旋翼动态失速研究新进展
CSTR:
作者:
作者单位:

南京航空航天大学直升机动力学全国重点实验室,南京 210016

作者简介:

通讯作者:

招启军,男,教授,博士生导师,E-mail:zhaoqijun@nuaa.edu.cn。

中图分类号:

V211.52

基金项目:

国家自然科学基金(12032012);博士后科学基金(2024M764240);江苏高校优势学科建设工程资助项目。


New Progress in Research on Dynamic Stall of Helicopter Rotors
Author:
Affiliation:

National Key Laboratory of Helicopter Aeromechanics, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    半个多世纪以来,旋翼动态失速始终是直升机空气动力学领域的研究热点与难点。通过持续深入的探索,研究人员在旋翼动态失速的测量与预测、流动机理认知、流动控制以及快速建模等方面取得了重大进展。本文首先介绍了动态失速试验测量与数值分析技术的发展情况,总结了当前技术水平,并剖析了这两类技术未来的发展方向。接着,从旋翼翼型、有限翼展机翼和旋翼等多个层面,系统梳理了动态失速机理的研究进展,对现有研究进行总结与分析,指出了当前研究存在的不足与难点。然后,阐述了旋翼动态失速流动控制方法的研究现状,对比了主动与被动流动控制各自的优缺点及发展潜力。最后,介绍了旋翼动态失速半经验模型的发展,特别指出近年来迅猛发展的人工智能技术,为半经验模型降低对试验数据的依赖、提升预测精度与效率带来了新契机。模态分解、数据驱动与机器学习等先进分析技术,为直升机旋翼动态失速研究注入了新活力,推动了相关研究的发展。可以预见,人工智能技术将在未来旋翼动态失速研究中发挥重要作用。

    Abstract:

    For over half a century, rotor dynamic stall has remained a key research focus and challenge in helicopter aerodynamics. Through persistent and in-depth exploration, researchers have achieved significant progress in measurement and prediction of rotor dynamic stall, understanding of flow mechanisms, flow control, and rapid modeling. This paper first reviews the development of experimental measurement techniques and numerical analysis methods for dynamic stall, summarizes current technical capabilities, and analyzes future directions for these two technologies. Subsequently, the research progress in dynamic stall mechanisms is systematically examined at multiple levels including rotor airfoils, finite wings, and rotors, with critical analysis and summarization of existing studies that clearly identifies current research limitations and challenges. The paper then elaborates on the current status of rotor dynamic stall flow control methods, comparing the respective advantages, disadvantages, and development potential of active versus passive flow control approaches. Finally, the evolution of semi-empirical dynamic stall models is discussed, particularly highlighting how the rapidly advancing artificial intelligence technology in recent years has created new opportunities for reducing reliance on experimental data while improving prediction accuracy and efficiency in semi-empirical models. Advanced analysis techniques such as modal decomposition, data-driven approaches, and machine learning have injected new vitality into the research on the dynamic stall of helicopter rotors, promoting the development of related research. It is foreseeable that artificial intelligence technology will play a crucial role in future studies of rotor dynamic stall.

    参考文献
    相似文献
    引证文献
引用本文

井思梦,招启军,杨柳青,高远,赵国庆.直升机旋翼动态失速研究新进展[J].南京航空航天大学学报,2025,57(2):205-225

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-03
  • 最后修改日期:2025-03-01
  • 录用日期:
  • 在线发布日期: 2025-04-25
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司