多轴向叶片预制体三维织造成形工艺研究
作者:
作者单位:

1.南京航空航天大学机电学院,南京210016;2.南京航空航天大学航空航天结构力学与控制全国重点实验室,南京 210016;3.南京航空航天大学材料科学与技术学院,南京211106

通讯作者:

王尧尧,男,副教授,E-mail:yywang_cmee@nuaa.edu.cn。

中图分类号:

V254.2

基金项目:

航空发动机及燃气轮机基础科学中心重点项目(P2022-B-Ⅳ-014-001)。


Research on 3D Weaving Process of Multi-axial Blade Preforms
Author:
Affiliation:

1.College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;2.State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;3.College of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为实现复合材料多轴向叶片预制体三维织造成形,开展多轴向复合材料预制体微观结构研究,发现正交纱线与斜向纱线单层织造厚度存在差异,提出三维模型非等厚度分层准则,基于Python开发三维模型非等厚度切片测试程序,对叶片模型进行切片测试,获取每层纱线织造范围,根据切片结果进行分层织造。试验结果表明,根据非等厚度切片算法对三维模型进行切片所得到的各层织造轮廓进行织造可以实现样件预制体的近净成形,对于多轴向异形构件近净成形具有重要工程意义。

    Abstract:

    In order to achieve the three-dimensional weaving of the multi-axial composite preform of composites, the microstructure of the multi-axial composite preform is studied, finding that there is a difference in the thickness of the single layer woven with orthogonal yarns and oblique yarns. A non-uniform thickness layering criterion for the three-dimensional model is proposed. A three-dimensional non-uniform thickness slicing testing program is developed based on Python, and the slicing test is conducted on the blade model to obtain the weaving range of each layer of yarns. According to the slicing results, the layers are woven layer by layer. The experimental results show that the three-dimensional model can be sliced into layers according to the non-uniform thickness slicing algorithm, and the woven profile of each layer can be used for the near-net shaping of the preform, which has important engineering significance for the near-net shaping of multi-axial irregular components.

    参考文献
    [1] 代彦彦, 张国利. 现代纺织复合材料概述[J]. 纺织科技进展, 2020,4: 1-8, 16.DAI Yanyan, ZHANG Guoli. Overview of modern textile composites[J]. Progress in Textile Science and Technology, 2020,4: 1-8, 16.
    [2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12.DU Shanyi. Advanced composites and aerospace[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12.
    [3] GUO Z T, HUANG H, SHAN Z D, et al. A digital implantation system for Z-direction yarn of three-dimensional preform based on flexible oriented woven process[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105385.
    [4] 王显峰, 阳铭广, 刘琛, 等. 变刚度复合材料层合板研究进展[J]. 南京航空航天大学学报, 2024, 56(1): 17-30.WANG Xianfeng, YANG Mingguang, LIU Chen, et al. Research progress of variable stiffness composite laminates[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2024, 56(1): 17-30.
    [5] 檀晨晨, 单忠德, 孙正, 等. 预制体织造过程的数字单元法模拟研究[J]. 南京航空航天大学学报, 2022, 54(5): 889-898.TAN Chenchen, SHAN Zhongde, SUN Zheng, et al. Research on digital element method simulation of weaving process of preforms[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 889-898.
    [6] 单忠德, 刘阳, 范聪泽, 等. 复合材料预制体成形制造工艺与装备研究[J]. 中国机械工程, 2021, 32(23): 2774-2784, 2831.SHAN Zhongde, LIU Yang, FAN Congze, et al. Research on manufacturing process and equipment of composite preform[J]. China Mechanical Engineering, 2021, 32(23): 2774-2784, 2831.
    [7] SUN Z, SHAN Z D, SHAO T M. A comparative study for the thermal conductivities of C/SiC composites with different preform architectures fabricating by flexible oriented woven process[J]. International Journal of Heat and Mass Transfer, 2021, 170: 120973.
    [8] LI M R, WANG P, BOUSSU F, et al. A review on the mechanical performance of three-dimensional warp interlock woven fabrics as reinforcement in composites[J]. Journal of Industrial Textiles, 2022, 51(7): 1009-1058.
    [9] 单忠德, 周征西, 孙正, 等. 航空航天先进复合材料三维预制体成形技术与装备研究[J]. 机械工程学报, 2023, 59(20): 64-79.SHAN Zhongde, ZHOU Zhengxi, SUN Zheng, et al. Research on 3D prefabrication technology and equipment for aerospace advanced composite materials[J]. Chinese Journal of Mechanical Engineering, 2023, 59(20): 64-79.
    [10] 陈利, 陈冬, 容治军, 等. 涡轮发动机复合材料叶片用增强织物研究进展[J]. 天津工业大学学报, 2018, 37(6): 30-35.CHEN Li, CHEN Dong, RONG Zhijun, et al. Research progress of reinforced fabric for turbine engine composite blades[J]. Journal of Tianjin Polytechnic University, 2018, 37(6): 30-35.
    [11] SHAOHENG F. Application and analysis of composite materials in actuation system for commercial aircraft engine[C]//Proceedings of the 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). Beihai, China: IEEE, 2021: 5-8.
    [12] 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018, 35(4): 748-759.GUAN Liuxiang, LI Jialu, JIAO YANAN, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 748-759.
    [13] 周何, 李小兵, 张婷, 等. 航空发动机复合材料风扇叶片制造工艺应用进展[J]. 航空制造技术, 2022, 65(13): 84-91.ZHOU He, LI Xiaobing, ZHANG Ting, et al. Progress in manufacturing process of composite fan blades for aero-engines[J]. Aeronautical Manufacturing Technology, 2022, 65(13): 84-91.
    [14] ELKINGTON M P, WARD C, POTTER K D. Automated layup of sheet prepregs on complex moulds[C]//Proceedings of the International SAMPE Technical Conference. Long Beach, USA: SAMPE, 2016.
    [15] 郭军, 马颜雪, 胡吉永, 等. 纵横双向变厚度三维机织物组织设计[J]. 产业用纺织品, 2016, 34(6): 8-12.GUO Jun, MA Yanxue, HU Jiyong, et al. Design of three-dimensional woven fabric with variable thickness[J]. Industrial Textiles, 2016, 34(6): 8-12.
    [16] 陈江华, 许洪明. 复合材料在进气机匣可调叶片上应用研究[J]. 纤维复合材料, 2021, 38(2): 59-64.CHEN Jianghua, XU Hongming. Application of composite materials on adjustable blades of air intake casing[J]. Fiber Composite Materials, 2021, 38(2): 59-64.
    [17] 单忠德, 战丽, 缪云良, 等. 复合材料构件数字化精确成形技术与装备[J]. 科技导报, 2020, 38(14): 63-67.SHAN Zhongde, ZHAN Li, MIAO Yunliang, et al. Technology and equipment of digital precision forming of composite components[J]. Science and Technology Review, 2020, 38(14): 63-67.
    [18] SHAN Z D, CHEN S, ZHANG Q, et al. Three-dimensional woven forming technology and equipment[J]. Journal of Composite Materials, 2016, 50(12): 1587-1594.
    [19] 刘云志, 战丽, 王争, 等. 柔性导向三维织造复合材料预制体细观结构分析[J]. 中国材料进展, 2020, 39(6): 458-463.LIU Yunzhi, ZHAN Li, WANG Zheng, et al. Microstructure analysis of prefabricated 3D woven composites with flexible guidance[J]. Advances in Materials in China, 2020, 39(6): 458-463.
    [20] 黄浩, 单忠德, 张丽娇, 等. 异形截面复合材料构件成形及力学性能预测方法研究[J]. 机械工程学报, 2024, 60(2): 107-118.HUANG Hao, SHAN Zhongde, ZHANG Lijiao, et al. Research on forming and mechanical properties prediction method of deformed section composite members[J]. Chinese Journal of Mechanical Engineering, 2024, 60(2): 107-118.
    [21] GUO Z T, SHAN Z D, HUANG J H, et al. Study on the distribution of frictional forces on Z-yarn continuous implanted preforms and their applications[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 62.
    [22] 雷聪蕊, 葛正浩, 魏林林, 等. 3D打印模型切片及路径规划研究综述[J]. 计算机工程与应用, 2021, 57(3): 24-32.LEI Congrui, GE Zhenghao, WEI Linlin, et al. Research review on 3D printing model slicing and path planning[J]. Computer Engineering and Applications, 2021, 57(3): 24-32.
    [23] TIAN J R. A review of 3D printing slicing algorithms[C]//Proceedings of the Fourth International Conference on Signal Processing and Machine Learning (CONF-SPML 2024). Chicago, USA: SPIE, 2024: 135-141.
    [24] ALKADI F, LEE K C, BASHIRI A H, et al. Conformal additive manufacturing using a direct-print process[J]. Additive Manufacturing, 2020, 32: 100975.
    [25] 王春香, 郝志博. 快速成型技术STL模型等厚分层算法研究[J]. 机械设计与制造, 2014(4): 133-136.WANG Chunxiang, HAO Zhibo. Research on equal thickness layering algorithm of rapid prototyping technology STL model[J]. Machine Design & Manufacture, 2014(4): 133-136.
    [26] 弋英民, 李迎国, 刘柏均, 等. 保留STL模型特征细节的3D打印自适应分层算法[J]. 西安交通大学学报, 2023, 57(8): 105-114.YI Yingmin, LI Yingguo, LIU Baijun, et al. Adaptive layering algorithm for 3D printing with STL model feature retention[J]. Journal of Xi’an Jiaotong University, 2023, 57(8): 105-114.
    [27] WANG X Q, CAO J F, CAO Y. A new multiobjective optimization adaptive layering algorithm for 3D printing based on demand-oriented[J]. Rapid Prototyping Journal, 2023, 29(2): 246-258.
    [28] GUAN Y, SUN X, JIN L, et al. Development of 3D printing entity slicing software[J]. China Foundry, 2021, 18(6): 587-592.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

边金帅,王尧尧,孙正,郭子桐,檀晨晨,郭科宏.多轴向叶片预制体三维织造成形工艺研究[J].南京航空航天大学学报,2025,57(1):100-108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-25
  • 最后修改日期:2024-11-27
  • 在线发布日期: 2025-03-10
文章二维码
您是第6582575位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!