基于星间链路的天基遥感中继联合调度方法
CSTR:
作者:
作者单位:

1.国防科技大学第六十三研究所,南京210007;2.中南大学自动化学院,长沙410070;3.国防科技大学智能科学学院,长沙410073

作者简介:

通讯作者:

伍国华,男,教授,博士生导师,E-mail:guohuawu@csu.edu.cn。

中图分类号:

V19

基金项目:


A Joint Scheduling Method of Space Based Remote Sensing and Relay Through Inter Satellite Link
Author:
Affiliation:

1.The 63rd Research Institute, National University of Defense Technology, Nanjing 210007, China;2.College of Automation, Central South University, Changsha 410070, China;3.College of Intelligent Science, National University of Defense Technology, Changsha 410073, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过星间链路(Inter satellite link, ISL)实现遥感卫星和中继卫星互联互通,能将天基遥感数据及时落地,缩短遥感反应时间,故对卫星遥感与中继联合调度问题进行研究。在对上述问题进行描述和分析的基础上,以最大化总的任务优先级为目标函数,以可见时间窗、服务时间窗口以及唯一性等为约束条件构建遥感与中继联合调度规划模型。本文设计了基于自适应大规模邻域搜索框架的联合调度优化算法(Adaptive large-scale neighborhood search based joint scheduling algorithm Ⅱ,ALNS-JS-Ⅱ)。该算法利用任务分配算子将多星调度分解成多个单星并行调度子问题,利用自适应的方法对所有算子进行选择,整个算法实现了遥感调度和中继调度间有效交互。为了验证ALNS-JS-Ⅱ算法的有效性,与遥感中继高耦合的自适应大规模邻域索算法(Adaptive large neighborhood search based highly coupled joint scheduling algorithm Ⅰ,ALNS-JS-Ⅰ)及基于自适应大规模邻域搜索的遥感中继分两阶段独立调度算法(Two stage ALNS, Ts-ALNS)等在多种任务场景下进行对比实验。实验结果表明,ALNS-JS-Ⅱ算法相比ALNS-JS-Ⅰ算法以及Ts-ALNS算法在算法求解收益上分别提高4.58%和1.48%,在求解效率上增加20%~30%。ALNS-JS-Ⅱ算法对遥感与中继资源联合调度问题有更好的求解能力。

    Abstract:

    The interconnection between remote sensing satellites and relay satellites can be achieved through inter satellite links (ISL), which enables timely transmission of space based remote sensing data to the ground and shorten the response time of remote sensing. Thus, the joint scheduling problem of satellite remote sensing and relay is studied. On the basis of describing and analyzing the problem, taking maximizing the total task priority as the objective function, this paper constructs a remote sensing and relay joint scheduling model with constraints of visible time window, service time window and uniqueness. To solve this problem, a joint scheduling optimization algorithm based on the adaptive large-scale neighborhood search framework, the adaptive large-scale neighborhood search based joint scheduling algorithm Ⅱ (ALNS-JS-Ⅱ) is designed. This algorithm uses the task allocation operator to decompose the multi-satellite scheduling into multiple single-satellite parallel scheduling sub-problems, and uses an adaptive method to select all operators. The whole algorithm realizes the effective interaction between remote sensing scheduling and relay scheduling. In order to verify the effectiveness of the ALNS-JS-Ⅱ algorithm, it is compared with the adaptive large neighborhood search algorithm with high coupling of remote sensing and relay, the adaptive large neighborhood search based highly coupled joint scheduling algorithm Ⅰ (ALNS-JS-Ⅰ), the two-stage independent scheduling algorithm of remote sensing and relay based on the adaptive large neighborhood search, the two stage ALNS (Ts-ALNS), in various task scenarios. The experimental results show that the ALNS-JS-Ⅱ algorithm is 4.58% and 1.48% better than ALNS-JS-Ⅰ and Ts-ALNS, respectively, in terms of algorithm solution gain, and 20%—30% faster in terms of solving efficiency. In conclusion, the ALNS-JS-Ⅱ algorithm has a better solving ability for the joint scheduling problem of remote sensing and relay resources.

    参考文献
    相似文献
    引证文献
引用本文

杨志玺,伍国华,叶淦华,李献斌,刘思力,杨俊.基于星间链路的天基遥感中继联合调度方法[J].南京航空航天大学学报,2024,56(6):1104-1113

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-15
  • 最后修改日期:2024-11-21
  • 录用日期:
  • 在线发布日期: 2024-12-18
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司