In order to improve the positioning accuracy of the traditional master-slave unmanned aerial vehicle (UAV) cooperative navigation algorithm based on range and angle measurement information, given the angle and range measurement errors of low-cost slave UAV measuring equipment, the error model of the cooperative navigation system of master-slave UAV is reconstructed. The navigation and measurement errors of the slave UAV are estimated and compensated. The state equations and measurement equations are derived, then the algorithm is implemented using Kalman filter. Simulation results show that for a slave UAV’s inertial navigation system based on a low accuracy micro electromechanical system (MEMS) with a gyro drift level of 10 (°)/h, the root mean square (RMS) of the east and the north velocity errors within 500 s are 0.25 m/s and 0.74 m/s, respectively, and the RMS of the latitude and the longitude errors are 17.10 m and 9.10 m, respectively, under single master UAV combined navigation. The speed accuracy is 3—10 times higher than that of the traditional algorithm, and the position accuracy is about 20 times higher. The positioning accuracy is close to the level of master UAV under double mater UAVs’ measurement references. The estimation accuracy of range measurement errors of the slave UAV is high, while the estimation accuracy of angle measurement errors is affected by the heading accuracy of the slave UAV itself. The estimation accuracy of angle measurement error can be further improved if heading references such as magnetic heading exist.
[1] 许晓伟, 赖际舟, 吕品, 等. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时, 2017, 4(4): 1-9.XU Xiaowei, LAI Jizhou, Pin LYU, et al. Research status and progress of multi-UAV cooperative navigation technology[J]. Navigation Positioning and Timing, 2017, 4(4): 1-9.
[2] 岳敬轩,主从式无人机编队协同导航算法研究[D].哈尔滨: 哈尔滨工程大学,2023.YUE Jingxuan.Research on cooperative navigation algorithm of master-slave UAV formation[D]. Harbin: Harbin Engineering University,2023.
[3] 李旭, 孔鑫, 刘锡祥, 等. 基于交互多模型距离平滑的UWB/IMU因子图组合导航方法[J]. 中国惯性技术学报,2022, 30(3): 322-327.LI Xu, KONG Xin, LIU Xixiang, et al. UWB/IMU factor graph integrated navigation method based on interactive multi-model distance smoothing[J]. Journal of Chinese Inertial Technology, 2022, 30(3): 322-327.
[4] 谢启龙,宋龙,鲁浩,等.协同导航技术研究综述[J].航空兵器,2019,26(4): 23-30.XIE Qilong, SONG Long, LU Hao, et al. Research overview of cooperative navigation technology[J]. Aeronautical Ordnance, 2019, 26(4): 23-30.
[5] ZHAO W,WANG R,XIONG Z, etal. Aerial swarm cooperative navigation enhancement method based on hybrid linearization belief propagation[C]//Proceedings of 2023 IEEE International Conference on Real-time Computing and Robotics(RCAR). Datong:IEEE,2023: 396-401.
[6] 苏炳志,何权荣,曹晞,等. 基于自适应容积信息滤波的无人机相对导航方法[J]. 中国惯性技术学报,2022,30(4): 492-500.SU Bingzhi, HE Quanrong, CAO Xi, et al. A relative navigation method for UAV based on adaptive cubature information filtering[J]. Journal of Chinese Inertial Technology, 2022, 30(4): 492-500.
[7] 蒋旭,熊智,王融,等. 基于节点贡献度评估的集群无人机协同导航方法[J]. 导航定位与授时, 2024, 11 (5): 82-90.JIANG Xu, XIONG Zhi, WANG Rong, et al. Cooperative navigation method for clustered UAVs based on node contribution evaluation[J]. Navigation Positioning and Timing, 2024, 11(5): 82-90.
[8] 彭宏泽. 无人机组合导航与多机协同定位研究[D].长春: 吉林大学,2024.PENG Hongze. Research on UAV integrated navigation and multi-vehicle cooperative positioning[D]. Changchun: Jilin University, 2024.
[9] 金红新,杨涛,王小刚,等.多传感器信息融合理论在无人机相对导航中的应用[J].国防科技大学学报,2017,39(5): 90-95.JIN Hongxin, YANG Tao, WANG Xiaogang, et al. Application of multi-sensor information fusion theory in relative navigation of UAVs[J]. Journal of National University of Defense Technology, 2017, 39(5): 90-95.
[10] 张曌宇,李楠,严恭敏. 多无人机协同导航技术发展与展望[C]//惯性技术发展动态发展方向研讨会文集——新型惯性元件与先进导航技术.[S.l.]: 中国惯性技术学会, 2023.ZHANG Zhaoyu, LI Nan, YAN Gongmin. Development and prospects of multi-UAV cooperative navigation technology[C]//Proceedings of the Seminar on the Dynamic Development Direction of Inertial Technology—New Inertial Components and Advanced Navigation Technology. [S.l.]: Chinese Society of Inertial Technology, 2023.
[11] 刘晓洋,李瑞涛,徐胜红.基于测距/测速信息的无人机协同导航算法研究[J].战术导弹技术,2019(2):73-77,112.LIU Xiaoyang, LI Ruitao, XU Shenghong. Research on UAV cooperative navigation algorithm based on range/speed information[J]. Tactical Missile Technology, 2019(2): 73-77,112.
[12] 陈东隅.一种改进的主从式协同导航技术研究[J].指挥控制与仿真,2023,45(3): 143-148.CHEN Dongyu. Research on an improved master-slave cooperative navigation technology[J]. Command Control and Simulation, 2023, 45(3): 143-148.
[13] 罗新灿,王茂松,崔加瑞,等.基于状态变换卡尔曼滤波的无人机/无人车跨域协同导航[J].中国惯性技术学报,2023, 31(12): 1189-1195, 1202.LUO Xincan, WANG Maosong, CUI Jiarui,et al. State transformation extended Kalman filter for UAV/UGV cross-domain cooperative navigation[J].Journal of Chinese Inertial Technology,2023, 12(31): 1189-1195, 1202.
[14] 曹正阳,张冰,白屹轩,等.GNSS/INS/VNS组合定位信息融合的多无人机协同导航方法[J].兵工学报,2023, 44(S2): 157-166.CAO Zhengyang, ZHANG Bing, BAI Yixuan,et al. Multi-UAV cooperative navigation method based on fusion of GNSS/INS/VNS positioning information[J]. Acta Armamentarii,2023, 44(S2): 157-166.
[15] 史晨发,熊智,蒋旭,等.基于AHRS的无人机集群协同导航方法[J].北京航空航天大学学报,2024. DOI: 10.13700/j.bh.1001-5965.2024.0343.SHI Chenfa, XIONG Zhi, JIANG Xu,et al. Cooperative navigation for UAV swarm based on AHRS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024. DOI: 10.13700/j.bh.1001-5965.2024.0343.