基于深度SVDD的发动机外涵静子叶片故障预警
作者:
作者单位:

南京航空航天大学民航学院,南京 211106

作者简介:

通讯作者:

蔡景,男,副教授,硕士生导师,E-mail:caijing@nuaa.edu.cn。

中图分类号:

V235.13

基金项目:

民航安全能力建设基金(2021-104)。


Fault Warning of Engine Fan Outlet Guide Blades Based on Deep-SVDD
Author:
Affiliation:

College of Civil Aviation, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    外涵静子叶片是大涵道比涡扇发动机气路的核心部件之一,外涵静子脱出是一种较为严重的故障模式,此故障可能会导致飞机或其他发动机部件损伤,进而造成灾难性事故。对外涵静子叶片脱出故障的预警是一项重要的工作。但因其早期特征不明显,现有的方法较难对此类故障进行有效的预警。因此,针对该问题,基于监控数据提出一种深度特征提取的支持向量数据域描述(Support vector data description, SVDD)的故障预警方法,以实现对外涵静子叶片脱出故障的早期预警。首先,采用基于发动机气路性能辨识的建模方法,建立发动机特定性能参数的观测模型对气路参数进行深度特征提取,以真实状态量与模型观测量的差值作为航空发动机是否发生故障的特征;然后利用SVDD算法建立决策边界,实现故障数据的自动划分,决策边界生成的阈值可在故障发生之前的一定时间之内给出告警;最后,经过多次计算,结果表明,在故障早期直至故障发生的区间内,表征其健康状态的性能参数都与观测量有较大的偏移,表明了所选特征的有效性。使用数据增强方法生成故障仿真数据与真实数据进行对比验证,预警时间比故障真实发生时间预警模型平均提前3.14 h。

    Abstract:

    Fan blades are ones of the core components of the gas path of a high bypass ratio turbofan engine, and fan outlet guide vane detachment is a severe failure mode. This failure could potentially damage the aircraft or other engine components, leading to catastrophic accidents. Therefore, early warning of fan outlet guide vane detachment has become an important task. However, due to the subtle early features of this type of failure, existing methods struggle to effectively warn against it. Therefore, to address this issue, a failure warning method based on deep feature extraction and support vector data description (SVDD) is proposed using monitoring data, aiming to achieve early warning of fan outlet guide vane detachment. First, a modeling method based on engine gas path performance identification is used to establish an observation model of specific engine performance parameters for deep feature extraction. The difference between the real state quantity and the model observation quantity is used as the feature of whether the aero engine has a failure. Second, the SVDD algorithm is used to establish a decision boundary, realizing the automatic division of failure data. The threshold generated by the decision boundary can provide an alarm within a certain time before the failure occurs. Finally, after multiple calculations, the results show that in the interval from the early stage of the failure to the occurrence of the failure, the performance parameters characterizing its health status have a large deviation from the observation quantity, indicating the effectiveness of the selected features. The failure simulation data generated using data augmentation methods are compared and verified with real data. Compared with the actual time of the failure, the warning model realizes the warning of the failure on average 3.14 h in advance.

    参考文献
    相似文献
    引证文献
引用本文

史昊天,蔡景,程冲.基于深度SVDD的发动机外涵静子叶片故障预警[J].南京航空航天大学学报,2024,56(5):939-949

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-03
  • 最后修改日期:2024-05-28
  • 录用日期:
  • 在线发布日期: 2024-11-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司