基于深度SVDD的发动机外涵静子叶片故障预警
CSTR:
作者:
作者单位:

南京航空航天大学民航学院,南京 211106

通讯作者:

蔡景,男,副教授,硕士生导师,E-mail:caijing@nuaa.edu.cn。

中图分类号:

V235.13

基金项目:

民航安全能力建设基金(2021-104)。


Fault Warning of Engine Fan Outlet Guide Blades Based on Deep-SVDD
Author:
Affiliation:

College of Civil Aviation, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | | | |
  • 文章评论
    摘要:

    外涵静子叶片是大涵道比涡扇发动机气路的核心部件之一,外涵静子脱出是一种较为严重的故障模式,此故障可能会导致飞机或其他发动机部件损伤,进而造成灾难性事故。对外涵静子叶片脱出故障的预警是一项重要的工作。但因其早期特征不明显,现有的方法较难对此类故障进行有效的预警。因此,针对该问题,基于监控数据提出一种深度特征提取的支持向量数据域描述(Support vector data description, SVDD)的故障预警方法,以实现对外涵静子叶片脱出故障的早期预警。首先,采用基于发动机气路性能辨识的建模方法,建立发动机特定性能参数的观测模型对气路参数进行深度特征提取,以真实状态量与模型观测量的差值作为航空发动机是否发生故障的特征;然后利用SVDD算法建立决策边界,实现故障数据的自动划分,决策边界生成的阈值可在故障发生之前的一定时间之内给出告警;最后,经过多次计算,结果表明,在故障早期直至故障发生的区间内,表征其健康状态的性能参数都与观测量有较大的偏移,表明了所选特征的有效性。使用数据增强方法生成故障仿真数据与真实数据进行对比验证,预警时间比故障真实发生时间预警模型平均提前3.14 h。

    Abstract:

    Fan blades are ones of the core components of the gas path of a high bypass ratio turbofan engine, and fan outlet guide vane detachment is a severe failure mode. This failure could potentially damage the aircraft or other engine components, leading to catastrophic accidents. Therefore, early warning of fan outlet guide vane detachment has become an important task. However, due to the subtle early features of this type of failure, existing methods struggle to effectively warn against it. Therefore, to address this issue, a failure warning method based on deep feature extraction and support vector data description (SVDD) is proposed using monitoring data, aiming to achieve early warning of fan outlet guide vane detachment. First, a modeling method based on engine gas path performance identification is used to establish an observation model of specific engine performance parameters for deep feature extraction. The difference between the real state quantity and the model observation quantity is used as the feature of whether the aero engine has a failure. Second, the SVDD algorithm is used to establish a decision boundary, realizing the automatic division of failure data. The threshold generated by the decision boundary can provide an alarm within a certain time before the failure occurs. Finally, after multiple calculations, the results show that in the interval from the early stage of the failure to the occurrence of the failure, the performance parameters characterizing its health status have a large deviation from the observation quantity, indicating the effectiveness of the selected features. The failure simulation data generated using data augmentation methods are compared and verified with real data. Compared with the actual time of the failure, the warning model realizes the warning of the failure on average 3.14 h in advance.

    参考文献
    [1] 党永杰, 邵伏永, 王春雪, 等. 弯扭静叶对跨声速单级风扇性能影响的数值研究[J]. 战术导弹技术, 2014(3): 79-83.DANG Yongjie, SHAO Fuyong, WANG Chunxue, et al. Numerical research on the bowed-twisted blade effect on the transonic single fan performance[J]. Tactical Missile Technology, 2014(3): 79-83.
    [2] 王前, 胡骏, 李亮, 等. 弯曲静子叶片对叶尖射流扩稳效果的影响[J]. 航空动力学报, 2015, 30(12): 2970-2975.WANG Qian, HU Jun, LI Liang, et al. Effect of bowed stator blade on stability enhancement by tip injection[J]. Journal of Aerospace Power, 2015, 30(12): 2970-2975.
    [3] 黄超伟, 马乐. 航空发动机涡轮叶片故障诊断分析方法[J]. 内燃机与配件, 2021(22): 125-126.HUANG Chaowei, MA Le. Analysis method of fault diagnosis of turbine blades for aero engines[J]. Internal Combustion Engine & Parts, 2021(22): 125-126.
    [4] 卜嘉利, 高志坤, 牛建坤, 等. 航空发动机风扇静子叶片裂纹失效分析[J]. 航空发动机, 2021, 47(6): 91-95.BU Jiali, GAO Zhikun, NIU Jiankun, et al. Crack failure analysis of a fan stator vane[J]. Aeroengine, 2021, 47(6): 91-95.
    [5] 李洋, 邱丰, 佟文伟. 发动机风扇静子叶片裂纹失效分析[J]. 失效分析与预防, 2019, 14(6): 401-405.LI Yang, QIU Feng, TONG Wenwei. Cracking analysis of stator blade of aero-engine fan[J]. Failure Analysis and Prevention, 2019, 14(6): 401-405.
    [6] GARCíA-MARTíNEZ M, DEL HOYO GORDILLO J C, VALLES GONZáLEZ M P, et al. Failure study of an aircraft engine high pressure turbine (HPT) first stage blade[J]. Engineering Failure Analysis, 2023, 149: 107251.
    [7] HANACHI H, MECHEFSKE C, LIU J, et al. Performance-based gas turbine health monitoring, diagnostics, and prognostics: A survey[J]. IEEE Transactions on Reliability, 2018, 67(3): 1340-1363.
    [8] SHUR M, STRELETS M, TRAVIN A, et al. Unsteady simulations of a fan/outlet-guide-vane system: Aerodynamics and turbulence[J]. AIAA Journal, 2018, 56(6): 2283-2297.
    [9] 黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52(4): 507-522.HUANG Jinquan, WANG Qihang, LU Feng. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 507-522.
    [10] GUO C C, SUN Y C, SU S Y, et al. Risk assessment method for controlled flight into terrain of airlines based on QAR data[J]. Aircraft Engineering and Aerospace Technology, 2023, 95(8): 1184-1193.
    [11] BAI M L, LIU J F, LONG Z H, et al. A comparative study on class-imbalanced gas turbine fault diagnosis[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237(3): 672-700.
    [12] NASHED M S, RENNO J, MOHAMED M S, et al. Gas turbine failure classification using acoustic emissions with wavelet analysis and deep learning[J]. Expert Systems with Applications, 2023, 232: 120684.
    [13] 卜旭东. 基于试飞数据的涡扇发动机模型辨识及故障检测研究[J]. 工程与试验, 2022, 62(2): 10-12, 130.BU Xudong. Research on model identification and fault detection of turbofan engine based on flight test data[J]. Engineering & Test, 2022, 62(2): 10-12, 130.
    [14] 闫斌斌. 基于气路性能混合模型的燃气轮机叶片故障预警及诊断方法研究[D]. 北京: 北京化工大学, 2021.YAN Binbin. Research on gas turbine blade fault early warning and diagnosis method based on gas path performance mixed model[D]. Beijing: Beijing University of Chemical Technology, 2021.
    [15] 马浩祎, 蔡景, 杨天策. 微型涡喷发动机喘振故障的预警技术研究[J]. 中国安全科学学报, 2023, 33(S1): 209-214.MA Haoyi, CAI Jing, YANG Tiance. Study on early warning technology of surge fault of micro turbojet engine[J]. China Safety Science Journal, 2023, 33(S1): 209-214.
    [16] 毛浩英, 孙有朝, 李龙彪, 等. 基于改进DRSN的航空发动机故障风险预警模型[J]. 航空动力学报, 2024, 39(2): 138-148.MAO Haoying, SUN Youchao, LI Longbiao, et al. Aeroengine fault risk early warning model based on improved DRSN[J]. Journal of Aerospace Power, 2024, 39(2): 138-148.
    [17] 李扬, 王逸斌, 朱春玲, 等. 基于遗传算法优化神经网络的结冰环境中MVD和LWC预测[J]. 南京航空航天大学学报, 2023, 55(2): 282-290.LI Yang, WANG Yibin, ZHU Chunling, et al. Prediction of MVD and LWC in icing environment based on genetic-algorithm-optimized neural network[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(2): 282-290.
    [18] ZHAO Y P, XIE Y L, YE Z F. A new dynamic radius SVDD for fault detection of aircraft engine[J]. Engineering Applications of Artificial Intelligence, 2021, 100: 104177.
    [19] YOON J, JARRETT D, SCHAAR M V D. Time-series generative adversarial networks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York,USA: ACM, 2019: 5508-5518.
    [20] DENG Y X, LU L, APONTE L, et al. Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients[J]. NPJ Digital Medicine, 2021, 4(1): 109.
    [21] REN H S, XU B X, WANG Y J, et al. Time-series anomaly detection service at microsoft[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, USA: ACM, 2019: 5508-5518.
    [22] BHATNAGAR A, KASSIANIK P, LIU Chenghao, et al. Merlion: A machine learning library for time series[EB/OL].(2021-09-20). https://doi.org/10.48550/arXiv.2109.09265.
    [23] WANG R, LIU C W, MOU X D, et al. Deep contrastive one-class time series anomaly detection[C]//Proceedings of the 2023 SIAM International Conference on Data Mining (SDM). Philadelphia, USA: Society for Industrial and Applied Mathematics, 2023: 694-702.
    [24] DE HAAN P, L?WE S. Contrastive predictive coding for anomaly detection[EB/OL].(2021-07-17). https://doi.org/10.48550/arXiv.2107.07820.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

史昊天,蔡景,程冲.基于深度SVDD的发动机外涵静子叶片故障预警[J].南京航空航天大学学报,2024,56(5):939-949

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-03
  • 最后修改日期:2024-05-28
  • 在线发布日期: 2024-11-08
文章二维码
您是第6562255位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!