复材风扇叶片榫头元件低周疲劳和损伤模式
CSTR:
作者:
作者单位:

1.中国航发商用发动机有限责任公司,上海 200241;2.上海交通大学机械与动力工程学院,上海 201100;3.燃气轮机与民用航空发动机教育部工程研究中心,上海 201100

通讯作者:

肖贾光毅,男,工程师,博士,E-mail:xiaojiaguangyi@163.com。

中图分类号:

V231.95

基金项目:

国家重点研发计划(2022YFB3709100)。


Low Cycle Fatigue and Damage Modes of Dovetail Elements in Laminated Composite Fan Blades
Author:
Affiliation:

1.AECC Commercial Aircraft Engine Co. Ltd., Shanghai 200241, China;2.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 201100, China;3.Engineering Research Center of Gas Turbine and Civil Aero Engine, Ministry of Education, Shanghai 201100, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    为考核层合结构复材风扇叶片在1.5倍离心载荷下的低周疲劳寿命,制备一批风扇叶片,在薄弱部位取样。通过建立层合结构风扇叶片有限元模型,模拟榫头的应力状态,从而确定拉伸载荷水平,开展拉-拉载荷低周疲劳测试。在相邻铺层间引入内聚力单元,并考虑榫头试样单向带面内损伤,模拟损伤变量随循环数累积的过程,增加虚拟拉伸载荷,得到榫头低周疲劳失效时刻的损伤状态。试验结果说明榫头元件形成分层裂纹的平均寿命为17 207 次循环,首次出现分层裂纹的位置基本一致。数值仿真结果表明榫头单向带基体和层间损伤累积引起裂纹扩展,导致低周疲劳失效。本研究可为建立层合结构复材风扇叶片低周疲劳寿命试验流程和疲劳失效判据提供支撑。

    Abstract:

    To validate the low cycle fatigue (LCF) life of laminated composite fan blade at 1.5 fold nominal design speed, multiple fan blades were manufactured, and dovetail specimens were sampled at one of weak locations of fan blade to conduct tension-tension fatigue test. The correspodning finite element model was established to simulate the reaction forces in blade root regions, thus the maximum longitudinal forces applied to dovetail elements were determined. By introducing cohesive elements between adjacent layers and considering in-plane damage of laminas, the maximum load in the sinuisoidal spectrum was dynamiclly enlarged so that the actual static reaction forces in simulations caused the propagation of cracks similar to those in the test. The evolution of damage variables in terms of loading cycles were effectively represented, and the multiple damage modes were obtained when fatigue failure occurred under the circumstance that no design curves were currently available to formulate ther relationship. Test results showed that the average loading cycle was 17 207 until the delamination cracks appeared within the dovetail body. There was small dispersity regarding the locations of damage onset and propagation. Numerical results showed that the tensile matrix and the interlaminar debonding were the dominating damage modes that led to the ultimate low cycle fatigue failure. This study will support the establishment of low cycle fatigue test process and fatigue failure criterion.

    参考文献
    [1] 陈巍. 先进航空发动机树脂基复合材料技术现状与发展趋势[J]. 航空制造技术, 2016(5): 68-72.CHEN Wei. Status and development trends of polymer matrix composites on advanced aeroengine[J]. Aeronautical Manufacturing Technology, 2016(5): 68-72.
    [2] 陈光. 用于波音787客机的GEnx发动机设计特点[J]. 航空发动机, 2010, 36(1): 1-6.CHEN Guang. Design characteristics of GEnx engine for B787[J]. Aeroengine, 2010, 36(1): 1-6.
    [3] 陈璐璐. 大涵道比航空发动机风扇叶片的集成设计[J]. 航空动力, 2023(6): 57-60.CHEN Lulu. Integrated design for high by-pass ratio fan blades[J]. Aerospace Power, 2023(6): 57-60.
    [4] 张媛媛, 陈璐璐, 苏震宇, 等. 复合材料风扇叶片成型关键技术探索[J]. 纤维复合材料, 2023, 40(2): 3-7.ZHANG Yuanyuan, CHEN Lulu, SU Zhenyu, et al. Research on composite fan blade manufacturing technology[J]. Fiber Composites, 2023, 40(2): 3-7.
    [5] 朱启晨, 陈勇, 肖贾光毅. 复合材料风叶片铺层设计方法研究[J]. 航空发动机, 2018, 44(3): 49-54.ZHU Qichen, CHEN Yong, XIAO Jiaguangyi. Study on laminate design method of composite fan blade[J]. Aeroengine, 2018, 44(3): 49-54.
    [6] 朱启晨, 陈勇. 复合材料宽弦风扇叶片模态仿真分析[J]. 航空发动机, 2019, 45(1): 28-32.ZHU Qichen, CHEN Yong. Modal simulation analysis of a composite wide-chord fan blade[J]. Aeroengine, 2019, 45(1): 28-32.
    [7] 邵帅, 曹航, 王相平, 等. 航空发动机复合材料风扇叶片强度分析与铺层优化设计[J]. 燃气涡轮试验与研究, 2023, 35(4): 20-25.SHAO Shuai, CAO Hang, WANG Xiangping, et al. Strength analysis and ply optimization of aero-engine composite fan blades[J]. Gas Turbine Experiment and Research, 2023, 35(4): 20-25.
    [8] 刘红彬, 陈伟, 杜文军. TC11材料高低周复合疲劳试验研究[J]. 燃气涡轮试验与研究, 2011, 24(2): 23-26.LIU Hongbin, CHEN Wei, DU Wenjun. Experimental investigation on low and high cycle fatigue combined fatigue performance of TC11 titanium alloy[J]. Gas Turbine Experiment and Research, 2011, 24(2): 23-26.
    [9] 王妍, 毕俊喜, 葛新宇, 等. 航空发动机叶片高低周复合疲劳寿命预测与损伤机理研究[J]. 内蒙古工业大学学报, 2023, 42(4): 324-329.WANG Yan, BI Junxi, GE Xinyu, et al. Aero-engine blade high and low circumference composite fatigue life prediction and damage mechanism research[J]. Journal of Inner Mongolia University of Technology, 2023, 42(4): 324-329.
    [10] 温班宁, 李少林, 石多奇, 等. 复合材料高低周复合疲劳试验技术[EB/OL]. (2023-09-15)[2024-02-27].https://doi.org/10.13224/j.cnki.jasp.20230096.WEN Banning, LI Shaolin, SHI Duoqi, et al. Combined cycle fatigue test technology for composite materials[EB/OL]. (2023-09-15)[2024-02-27].https://doi.org/10.13224/j.cnki.jasp.20230096.
    [11] 由于, 张伟, 王春生. 叶片高低周复合疲劳试验技术研究[J]. 机械强度, 2020, 42(2): 331-336.YOU Yu, ZHANG Wei, WANG Chunsheng. Research of HCF/LCF combined cycle fatigue experimental technique for blade[J]. Journal of Mechanical Strength, 2020,42(2): 331-336.
    [12] WAN Aoshuang, SHI Junfeng, LI Dinghe. Experimental and numerical investigation on tension-tension fatigue behavior of three-dimensional five-directional hybrid braided composites[J]. International Journal of Fatigue, 2024, 178: 107975.
    [13] 美国CMH-17协调委员会. 复合材料手册: 聚合物基复合材料. 第3卷, 材料应用、设计和分析[M]. 上海: 上海交通大学出版社, 2015.CMH-17 PMC Coordination Meeting. Composite materials handbook, volume 3: Polymer matrix composites: Materials usage, design, and analysis[M]. Shanghai: Shanghai Jiao Tong University Press, 2015.
    [14] 张煜坤, 陈勇, 唐旭. 铺层复合材料风扇叶片榫头元件级静强度试验方法[J]. 推进技术, 2022,43(3): 342-351.ZHANG Yukun, CHEN Yong, TANG Xu. Test method for static strength of laminated composite fan blade dovetail in element level[J]. Journal of Propulsion Technology, 2022, 43(3): 342-351.
    [15] 张媛媛, 王祯鑫, 陈璐璐, 等. 复合材料风扇叶片关键原材料验证与应用[J]. 航空动力, 2023(3): 24-26.ZHANG Yuanyuan, WANG Zhenxin, CHEN Lulu, et al. Verification and application of key raw materials for composite fan blades[J]. Aerospace Power, 2023(3): 24-26.
    [16] 民航局航空器适航审定司. 颁发专用条件CJ-1000A 型发动机复合材料风扇叶片征求意见稿[EB/OL].(2023-04-26). http://www.caac.gov.cn/HDJL/YJZJ/202304/P020230428334930851576.pdf.Civil Aviation Administration of China. Draft for soliciting opinions on the issuance of special conditions CJ-1000A engine composite material fan blades[EB/OL]. (2023-04-26).http://www.caac.gov.cn/HDJL/YJZJ/202304/P020230428334930851576.pdf.
    [17] 康永强. 复合材料风扇叶片榫头铺层设计及分析验证[D]. 上海:上海交通大学, 2020.KANG Yongqiang. Laminate design and analysis of composite fan blade dovetail[D]. Shanghai: Shanghai Jiao Tong University, 2020.
    [18] PINHO S T, DALVIA C G, CAMANHO P P, et al. Failure models and criteria for FRP under in-plane or three dimensional stress states includng shear non-linearity: NASA/TM-2005-213530[R]. [S.l.]: NASA, 2005.
    [19] 王湘江, 夏俊康, 冀运东, 等. 复合材料开孔板拉伸损伤对剩余压缩强度的影响[J]. 复合材料学报, 2024,41(4): 2111-2125.WANG Xiangjiang, XIA Junkang, JI Yundong, et al. Effect of tension damage on structures residual compression strength of open-hole composite laminates[J]. Acta Materiae Compositae Sinica, 2024,41(4): 2111-2125.
    [20] ALFANO G, CRISFIELD M A. Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues[J]. International Journal for Numerical Methods in Engineering, 2001, 50: 1701-1736.
    [21] ZHANG Hanyu, ZHANG Lei, XU Can, et al. Global sensitivity analysis of mechanical properties in hybrid single lap aluminum-CFRP (plain woven) joints based on uncertainty quantification[J]. Composite Structures, 2022, 280: 114841.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖贾光毅,唐旭,张煜坤,陈勇.复材风扇叶片榫头元件低周疲劳和损伤模式[J].南京航空航天大学学报,2024,56(3):486-493

复制
分享
文章指标
  • 点击次数:290
  • 下载次数: 558
  • HTML阅读次数: 206
  • 引用次数: 0
历史
  • 收稿日期:2024-02-27
  • 最后修改日期:2024-05-26
  • 在线发布日期: 2024-06-05
文章二维码
您是第6765145位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!