复合材料表面超疏水-电热防除冰实验研究
CSTR:
作者:
作者单位:

南京航空航天大学航空学院,南京210016

通讯作者:

朱春玲,女,教授,博士生导师,E-mail: clzhu@nuaa.edu.cn。

中图分类号:

V244.1+5

基金项目:

国家自然科学基金(11832012)。


Experimental Study on Superhydrophobic Electrothermal Anti-icing and De-icing on Composite Surface
Author:
Affiliation:

College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    针对无人机复合材料蒙皮表面结冰问题,设计了一种超疏水-电加热膜-复合材料一体化结构,结合超疏水制备技术与嵌入式电加热膜一体化成形工艺制备多层复合结构。其中,环氧树脂基的超疏水涂层具有优异的疏水性能,水滴延迟结冰时间增加18倍,提高防冰效果;加热膜与复合材料的一体化结构,增强热传导方向,提高电热转化效率,从而提升除冰效果。通过自主搭建试验台,对超疏水-电加热膜-复合材料一体化构型进行防除冰实验。实验结果表明,超疏水-电加热膜-复合材料一体化方法在达到防除冰效果的同时,除冰节能35%左右,具有高效防除冰和降低能耗的可行性。

    Abstract:

    In order to solve the problem of UAV composite surface icing, an integrated structure of superhydrophobic coating, electrothermal film and composite surface is designed and prepared. The multilayer integrated structure consists of the superhydrophobic coating preparation method and the embedded electrothermal film process. The superhydrophobic coating based on epoxy resin has excellent hydrophobicity, which increases 18 times longer than untreated one for delayed icing time of water droplets, and thus the anti-icing effect is improved. The integrated structure of heating film and composite surface enhances the directivity of heat conduction, which improves the efficiency of electrothermal conversion, and thus the de-icing effect also is improved. The de-icing and anti-icing tests of integrated structure are verified by self-designed test platforms. The experimental results show that the energy consumption is cut by about 35% by integrated structure of superhydrophobic coating, electrothermal film and composite surface. The integrated structure is feasible to achieve the anti/de-icing effect and reduce energy consumption.

    参考文献
    [1] 周莉,徐浩军,龚胜科,等.飞机结冰特性及防除冰技术研究[J].中国安全科学学报, 2010, 20(6): 105-110.ZHOU Li, XU Haojun, GONG Shengke, et al. Research of aircraft icing characteristics and anti-icing and deicing technology[J]. China Safety Science Journal, 2010, 20(6): 105-110.
    [2] 陈宇,罗艳春,刘国庆,等.飞机结冰对飞行安全的影响[J].装备制造技术,2014(5): 254-255, 291.CHEN Yu, LUO Yanchun, LIU Guoqing, et al. Aircraft icing effect on flight safety[J]. Equipment Manufacturing Technology, 2014(5): 254-255, 291.
    [3] SHAKHATREH H, SAWALMEH A H, AL-FUQAHA A, et al. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges[J]. IEEE Access, 2019, 7:48572-48634.
    [4] 倪楠楠,卞凯,夏璐,等. 先进复合材料在无人机上的应用[J].航空材料学报,2019, 39: 45-60.NI Nannan, BIAN Kai ,XIA Lu, et al. Application of advanced composite materials for UAV[J]. Journal of Aeronautical Materials, 2019, 39: 45-60.
    [5] RICHARD H, ADRIANA E, MIKKEL C, et al. Experimental heat loads for electrothermal anti-icing and de-icing on UAVs[J]. Aerospace, 2021. DOI: 10.3390/aerospace8030083.
    [6] 路晶,史宇,张书畅,等.无人机航迹规划算法综述[J].航空计算技术,2022, 52(4): 131-134.LU Jing, SHI Yu,ZHANG Shuchang, et al. A review of UAV trajectory planning algorithms[J]. Aeronautical Computing Technique, 2022, 52(4): 131-134.
    [7] CHEN B, WANG L W. Simulation and research of aircraft deicing fluids deicing process[J]. Applied Mechanics and Materials, 2011, 121/122/123/124/125/126: 4695-4699.
    [8] 郭之强,郑梅,董威,等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017, 38(2): 81-90.GUO Zhiqiang, ZHENG Mei, DONG Wei, et al. Influence of surface convex on heat transfer enhancement of wing hot air anti-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 81-90.
    [9] CHENG J C, CHEN Y M. Investigation of fluid flow and heat transfer characteristics for a thermal anti-icing system of a high-altitude and long-endurance UAV[J]. Journal of Mechanics, 2021, 37: 467-483.
    [10] CHEN J, LIANG H, WU Y, et al. Experimental study on anti-icing performance of NS-DBD plasma actuator[J]. Applied Sciences, 2018, 8(10): 1889.
    [11] 田苗,宋慧敏,梁华,等.介质阻挡放电等离子体防除冰实验研究[J].化工学报, 2019, 70(11): 4247-4256.TIAN Miao, SONG Huimin, LIANG Hua, et al. Experimental study on DBD discharge plasma for anti-icing and de-icing[J]. CIESC Journal, 2019, 70(11): 4247-4256.
    [12] DE PAUL D, DOLATABADI A. Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil[J]. Journal of Aircraft, 2017, 54(2): 490-499.
    [13] ZENG D, LI Y, HUAN D, et al. Robust epoxy-modified superhydrophobic coating for aircraft anti-icing systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127377.
    [14] FALZON B G, ROBINSON P, FRENZ S, et al. Development and evaluation of a novel integrated anti-icing/de-icing technology for carbon fibre composite aerostructures using an electro-conductive textile[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 323-335.
    [15] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.ZHENG Haikun, CHANG Shinan, ZHAO Yuanyuan. Anti-icing & icephobic mechanism and applications of superhydrophobic /ultra slippery surface[J]. Progress in Chemistry, 2017, 29(1): 102-118.
    [16] KULINICH S A, FARHADI S, NOSE K, et al. Superhydrophobic surfaces: Are they really ice-repellent?[J]. Langmuir, 2011, 27(1): 25-29.
    [17] 马莉娅, 熊联友, 刘立强, 等. 用于碳纤维复合材料的电热除冰技术实验研究[J]. 航空学报, 2012, 33(1): 54-61.MA Liya, XIONG Lianyou, LIU Liqiang, et al. Experimental study on electro-thermal deicing technique for carbon fiber composite[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 54-61.
    [18] ANTONINI C, INNOCENTI M, HORN T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67(1/2): 58-67.
    [19] 刘重洋,王正之,田甜,等. 三维空速管电热防冰系统性能计算[J]. 航空计算技术, 2019, 49(5): 54-58.LIU Chongyang, WANG Zhengzhi, TIAN Tian, et al. Performance calculation for three-dimensional pitot tube electrothermal anti-icing system[J]. Aeronautical Computing Technique, 2019, 49(5): 54-58.
    [20] 张旋,吴晓敏,闵敬春. 冷壁上单个静止过冷液滴冻结过程的数值模拟[J]. 工程热物理学报, 2018, 39(1): 159-164.ZHANG Xuan, WU Xiaomin, MIN Jingchun. Numerical simulation of freezing process of a sessile supercooled water droplet on a cold wall[J]. Journal of Engineering Thermophysics, 2018, 39(1): 159-164.
    [21] HUANG L, LIU Z, LIU Y, et al. Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil[J]. International Journal of Thermal Sciences, 2011, 50(4): 432-439.
    [22] YUE X, LIU W, WANG Y. Freezing and melting of sessile droplet on micro- and hierarchically-structured silicon surfaces[J]. Applied Thermal Engineering, 2019, 161: 114185.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于大川,王敬鑫,王渊,朱春玲,王逸斌.复合材料表面超疏水-电热防除冰实验研究[J].南京航空航天大学学报,2024,56(2):327-333

复制
分享
文章指标
  • 点击次数:648
  • 下载次数: 880
  • HTML阅读次数: 269
  • 引用次数: 0
历史
  • 收稿日期:2022-12-22
  • 最后修改日期:2023-06-25
  • 在线发布日期: 2024-04-05
文章二维码
您是第6888620位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!