直升机尾传动轴抗弹击损伤研究综述
作者:
作者单位:

1.南京航空航天大学直升机传动技术国家级重点实验室,南京 210016;2.中国人民解放军陆航研究所,北京 101121;3.中国航发湖南动力机械研究所直升机传动技术国家级重点实验室,株洲 412002

通讯作者:

王旦,男,副教授,E-mail: wangdan_053@nuaa.edu.cn。

基金项目:

国家自然科学基金(52005253);直升机传动技术国家级重点实验室开放基金(HTL-A-21G07,HTL-A-22K01)。


Research on Ballistic Damage and Anti-ballistic Design of Helicopter Tail Drive Shaft: An Overview
Author:
Affiliation:

1.National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;2.Army Aviation Research Institute, PLA, Beijing 101121, China;3.National Key Laboratory of Science and Technology on Helicopter Transmission, Hunan Aviation Powerplant Research Institute, AECC, Zhuzhou 412002, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    直升机尾传动轴在军事应用中容易遭受弹击损伤,严重影响直升机飞行安全。为此,国内外开展了大量直升机尾传动轴抗弹击损伤研究工作。本文首先从军事需求角度阐述尾传动轴抗弹击损伤研究的重要意义。然后从尾传动轴弹击损伤评定指标、研究方法、影响因素以及尾传动轴抗弹击性能提升方法4方面介绍了国内外直升机尾传动轴抗弹击损伤研究现状及其发展趋势。最后论述了国内在尾传动轴抗弹击损伤研究方面的不足之处,并从材料性能参数测试、新型数值仿真模拟方法、尾传动轴抗破片冲击研究和弹击复合材料尾传动轴数值模拟4方面展望了我国在尾传动轴抗弹击损伤方面亟需开展的研究。

    Abstract:

    Helicopter tail drive shaft is susceptible to ballistic damage in military applications, significantly compromising the safety of helicopter flight. Consequently, extensive research on ballistic damage and anti-ballistic design of helicopter tail drive shaft has been conducted both domestically and internationally. Firstly, the military significance of researching the ballistic damage and anti-ballistic design of helicopter tail drive shaft is elaborated. Secondly, the current research status and development trends of ballistic damage and anti-ballistic design of helicopter tail drive shaft at home and abroad are detailed from four aspects: evaluation criteria, research methods, influencing factors, and methods for improving anti-ballistic performance of the tail drive shaft. Finally,the shortcomings of domestic research in this area are discussed, and the research directions that urgently need to be carried out in the future are prospected from the views of material property testing, new numerical simulation methods, research on damage by fragment penetration and numerical simulation of ballistic damage of composite tail drive shaft.

    参考文献
    [1] 符长青, 符晓勤, 马宇平. 旋翼飞行器动力装置 [M].北京: 清华大学出版社, 2017.FU Changqing, FU Xiaoqin, MA Yuping. Rotorcraft power plant[M]. Beijing: Tsinghua University Press, 2017.
    [2] 倪德, 朱如鹏, 陆凤霞, 等. 考虑空间机动飞行的直升机尾传动轴建模与临界转速分析[J]. 航空动力学报, 2015, 30(6): 1520-1528.NI De, ZHU Rupeng, LU Fengxia, et al. Modeling and analysis of critical speed for tail drive shaft of helicopter considering space maneuvering flight[J]. Journal of Aerospace Power, 2015, 30(6): 1520-1528.
    [3] 熊俊, 李晓绪, 孙金凤. 直升机尾传动轴系统研究综述[C]//2021年中国航空工业技术装备工程协会年会. 青岛: [s.n.], 2021.XIONG Jun, LI Xiaoxu, SUN Jinfeng. Summary of helicopter tail transmission shaft system study[C]//Proceedings of the 2021 China Aviation Industry Technology and Equipment Engineering Association Annual Conference. Qingdao: [s.n.], 2021.
    [4] COUCH M, LINDELL D. Study on rotorcraft safety and survivability[C]//Proceedings of the American Helicopter Society 66th Annual Forum. Phoenix, USA: American Helicopter Society, 2010.
    [5] 胡诤哲, 李向东, 周兰伟, 等. 武装直升机在杀爆弹打击下的易损性及防护策略[J]. 北京航空航天大学学报, 2020, 46(6): 1214-1220.HU Zhengzhe, LI Xiangdong, ZHOU Lanwei, et al. Vulnerability and defense strategy for gunship against HE munition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1214-1220.
    [6] EDWARDS A C, NEUGEBAUER A K. Damage tolerant design of the YAH-64 drive system[J]. Journal of the American Helicopter Society, 1981, 26(1): 29-33.
    [7] PADFIELD G D. Helicopter flight dynamics: The theory and application of flying qualities and simulation modelling[M]. Oxford: John Wiley & Sons, 2007.
    [8] 佘亦曦, 康丽霞, 唐朋. 直升机传动系统的现状与发展研究[J]. 航空科学技术, 2021, 32(1): 78-82.SHE Yixi, KANG Lixia, TANG Peng. Development status and future trend of helicopter transmission system[J]. Aeronautical Science & Technology, 2021, 32(1): 78-82.
    [9] 赵思波, 万振华, 王希. 直升机尾传动轴弹击损伤仿真与试验验证[J]. 长沙航空职业技术学院学报, 2022, 22(3): 6-9.ZHAO Sibo, WAN Zhenhua, WANG Xi. Simulation and experimental verification of helicopter tail drive shaft impact damage[J]. Journal of Changsha Aeronautical Vocational and Technical College, 2022, 22(3): 6-9.
    [10] NAIK N K, SHRIRAO P. Composite structures under ballistic impact[J]. Composite Structures, 2004, 66(1/2/3/4): 579-590.
    [11] 宋兴武. 直升机尾传动轴系设计[D]. 哈尔滨: 哈尔滨工程大学, 2007.SONG Xingwu. Design of helicopter tail transmission shaft[D]. Harbin: Harbin Engineering University, 2007.
    [12] COLOMBO D, GIGLIO M. Numerical analysis of thin-walled shaft perforation by projectile[J]. Computers & Structures, 2007, 85(15/16): 1264-1280.
    [13] 郭民昕, 宁向荣, 赵思波. 基于动力学仿真的直升机尾传动轴中部弹击损伤规律研究[J]. 长沙航空职业技术学院学报, 2021, 21(1): 1-5.GUO Minxin, NING Xiangrong, ZHAO Sibo. Research on ballistic impact damage law of a helicopter tail shaft based on dynamic simulation[J]. Journal of Changsha Aviation Vocational and Technical College, 2021, 21(1): 1-5.
    [14] 林瑶洁. 弹击直升机尾传动轴损伤规律及剩余寿命研究[D]. 南京:南京航空航天大学, 2023.LIN Yaojie. Study on damage and residual strength of helicopter tail drive shaft subjected to ballistic impact[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2023.
    [15] GIUDICI L, MANES A, GIGLIO M. Ballistic impact on a transmission tail rotor shaft for helicopter[C]//Proceedings of the 25th International Symposium on Ballistic. [S.l.]: China Science and Technology Press, 2010.
    [16] MANES A, LUMASSI D, GIUDICI L, et al. An experimental-numerical investigation on aluminium tubes subjected to ballistic impact with soft core 7.62 ball projectiles[J]. Thin-Walled Structures, 2013, 73: 68-80.
    [17] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): An overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76.
    [18] 滕凌虹, 曹伟伟, 朱波, 等. ABAQUS 在模拟弹丸高低速冲击金属和复合材料靶板方面的应用及研究进展[J]. 材料导报, 2021, 35(11): 11145-11153.TENG Linghong, CAO Weiwei, ZHU Bo, et al. Application and development of ABAQUS in simulating high and low velocity impact metallic and composite targets of projectiles[J]. Materials Reports, 2021, 35(11): 11145-11153.
    [19] MANES A, GIUDICI L, GIGLIO M. Fatigue crack propagation under torsional spectrum load of a helicopter tail rotor shaft after ballistic damage[C]//Proceedings of the 9th International Conference on Multiaxial Fatigue and Fracture. Parma, Italy: [s.n.], 2010.
    [20] GILIOLI A, MANES A, GIGLIO M, et al. Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model[J]. International Journal of Impact Engineering, 2015, 76: 207-220.
    [21] MANES A, LUMASSI D, MAGRASSI G, et al. Micro-scale analysis and simulation on the behavior of a component in Al-6061 during ballistic impact: 3D acquisition and FE model[J]. Procedia Engineering, 2011, 10: 3435-3440.
    [22] BORDEGONI M, GIGLIO M, LUMASSI D, et al. Analysis of terminal ballistic onto an helicopter drive shaft impacted by NATO 7.62 mm bullet: Tests and simulations[C]//Proceedings of the third International Conference on Impact Loading of Lightweight Structures. Valenciennes: [s.n.], 2011.
    [23] GIGLIO M, GILIOLI A, MANES A, et al. Investigation about the influence of the mechanical properties of lead core and brass jacket of a NATO 7.62 mm ball bullet in numerical simulations of ballistic impacts[C]//Proceedings of the 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Freiburg, Germany: EDP Sciences, 2012.
    [24] MANES A, PERONI L, SCAPIN M, et al. Analysis of strain rate behavior of an Al 6061 T6 alloy[J]. Procedia Engineering, 2011, 10: 3477-3482.
    [25] BAO Y, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98.
    [26] GIGLIO M, GILIOLI A, MANES A. Mechanical behaviour of Al 6061-T6 aluminium alloy under large strain and failure[C]//Proceedings of the Numerical Modeling of Materials under Extreme Conditions. Berlin, Heidelberg: Springer, 2014.
    [27] PERONI L, SCAPIN M, FICHERA C, et al. Mechanical properties at high strain-rate of lead core and brass jacket of a NATO 7.62 mm ball bullet[C]//Proceedings of the 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Freiburg, Germany: EDP Sciences, 2012.
    [28] LUMASSI D, MANES A, GIGLIO M. Protection effect on a ballistic impact of NATO 7.62 ball bullet into helicopter drive shaft: Numerical simulation[J]. Applied Mechanics and Materials, 2011, 82: 710-715.
    [29] 杨彬. 军用直升机装甲防护现状与展望[J]. 中国设备工程, 2021(2): 179-182.YANG Bin. Present situation and prospect of armored protection of military helicopter[J]. China Plant Engineering, 2021(2): 179-182.
    [30] GRUJICIC M, BELL W C, PANDURANGAN B. Design and material selection guidelines and strategies for transparent armor systems[J]. Materials & Design, 2012, 34: 808-819.
    [31] RICHARDSON M O W, WISHEART M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(12): 1123-1131.
    [32] 武岳, 王旭东, 刘迪, 等. 直升机陶瓷复合装甲发展现状及新型材料应用前景[J]. 航空材料学报, 2019, 39(5): 34-44.WU Yue, WANG Xudong, LIU Di, et al. Development and application analysis of ceramic composites armor for helicopter[J]. Journal of Aeronautical Materials, 2019, 39(5): 34-44.
    [33] 宋焕成, 梁志勇, 张佐光. 武装直升机与陶瓷/复合材料装甲[J]. 航空制造工程, 1994(9): 9-11.SONG Huancheng, LIANG Zhiyong, ZHANG Zuoguang. Gunship with ceramic/composite armor[J]. Aviation Maintenance & Engineering, 1994(9): 9-11.
    [34] 张佐光, 梁志勇, 仲伟虹, 等. 武装直升机轻型复合防弹装甲技术[J]. 航空制造工程, 1995(11): 33-34,36.ZHANG Zuoguang, LIANG Zhiyong, ZHONG Weihong, et al. Light composite bullet proof armor technology for armed helicopter[J]. Aviation Maintenance & Engineering, 1995(11): 33-34,36.
    [35] COLLINS P, MCAULAY C. Reducing the vulnerability of military helicopters to combat damage[C]//Proceedings of the 29th European Rotorcraft Forum. Friedrichshafen, Germany: QinetiQ Ltd, 2003.
    [36] LAW N G. Integrated helicopter survivability[D]. England, UK: Cranfield University, 2011.
    [37] WEBER T A, RUFF-STAHL H J K. Advances in composite manufacturing of helicopter parts[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2017, 4(1): 1-33.
    [38] 谌广昌, 姚佳楠, 张金栋, 等. 高性能热塑性复合材料在直升机结构上的应用与展望[J]. 航空材料学报, 2019, 39(5): 24-33.CHEN Guangchang, YAO Jianan, ZHANG Jindong, et al. Application and prospect of high-performance thermoplastic composites in helicopter structure[J]. Journal of Aeronautical Materials, 2019, 39(5): 24-33.
    [39] NADEEM S K S, GIRIDHARA G, RANGAVITTAL H K. A review on the design and analysis of composite drive shaft[J]. Materials Today: Proceedings, 2018, 5(1): 2738-2741.
    [40] 常燕, 朱涛, 孙士祥, 等. 复合材料传动轴的应用及技术研究进展[J]. 工程塑料应用, 2020, 48(7): 154-157.CHANG Yan, ZHU Tao, SUN Shixiang, et al. Application and advance in technology research of composite drive shaft[J]. Engineering Plastics Application, 2020, 48(7): 154-157.
    [41] POTLURI R, KETHA K K. Comparison between GFRP and CFRP composite power take-off shaft in helicopters for prescribed torque and geometrical constraints[J]. Journal of Material Science and Mechanical Engineering, 2015, 2(3): 214-219.
    [42] 王卫刚. 直升机传动系统设计方法研究[D]. 南京:南京航空航天大学, 2011.WANG Weigang. Research on design method of helicopter transmission system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [43] SPEARS S. Design and certification of the model 429 supercritical tail rotor driveshaft[C]//Proceedings of the American Helicopter Society 64th Annual Forum. Montreal, Canada: American Helicopter Society, 2008.
    [44] LI K F, XIA T H. The application of advanced composite material in tail driver shaft of the helicopter[J]. Applied Mechanics and Materials, 2011, 86: 365-369.
    [45] WANG Q, LI T, WANG B, et al. Prediction of void growth and fiber volume fraction based on filament winding process mechanics[J]. Composite Structures, 2020, 246: 112432.
    [46] 罗睿, 李勇, 还大军, 等. 直升机复合材料传动轴缠绕设计制备及接头连接研究进展[J]. 航空材料学报, 2021, 41(3): 52-65.LUO Rui, LI Yong, HUAN Dajun, et al. Research progress on structural design, manufacturing technology and connection mode of filament wound composite transmission shaft for helicopter[J]. Journal of Aeronautical Materials, 2021, 41(3): 52-65.
    [47] ZHAO G, ZHANG L, TANG C, et al. Experimental study on the torsion behavior of a 3D 4-directionally braided composite shaft using DIC and AE[J]. Polymer Testing, 2018, 72: 122-131.
    [48] DEAN E H. Evaluation of lightweight, composite, impact-resistant tail rotor drive shafting for helicopters[M]. Eustis:[s.n.], 1979.
    [49] GARHART J. Development and qualification of composite tail rotor drive shaft for the UH-60M[C]//Proceedings of the American Helicopter Society 64th Annual Forum. Montreal, Canada: American Helicopter Society, 2008.
    [50] KUMAR H C, SWAMY R P. Analysis of metallic and composite tail rotor drive shaft for ballistic impact[J]. International Journal of Mechanical Engineering and Robotics Research, 2015, 4(1): 455.
    [51] SOLLENBERGER S G, BAIL J L, KOHLMAN L, et al. Ballistic impact tolerance of filament-wound composite tubes with rigid and flexible matrix materials[C]//Proceedings of the 25th Technical Conference of the American Society for Composites and the 14th US-Japan Conference on Composite Materials. Dayton, OH, USA: [s.n.], 2010.
    [52] HENRY T C, RIDDICK J C, MILLS B T, et al. Composite driveshaft prototype design and survivability testing[J]. Journal of Composite Materials, 2017, 51(16): 2377-2386.
    [53] HENRY T C, MILLS B T. Optimized design for projectile impact survivability of a carbon fiber composite drive shaft[J]. Composite Structures, 2019, 207: 438-445.
    [54] 未雷. 直升机复合材料尾传动轴弹击损伤规律研究[D]. 南京: 南京航空航天大学, 2024.WEI Lei. Research on ballistic impact damage law of helicopter composite tail drive shaft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2024.
    [55] ZHANG C, ZHU R P, WANG D, et al. Dynamic characteristics analysis and the identification signal of the horizontal tail drive shaft system with the ballistic impact damage of a helicopter[J]. Structural Health Monitoring, 2024, 23(2): 1123-1147.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王旦,未雷,李鹏,徐鹏行,王希,李坚,朱如鹏.直升机尾传动轴抗弹击损伤研究综述[J].南京航空航天大学学报,2024,56(2):197-207

复制
分享
文章指标
  • 点击次数:640
  • 下载次数: 789
  • HTML阅读次数: 234
  • 引用次数: 0
历史
  • 收稿日期:2023-08-02
  • 最后修改日期:2024-01-16
  • 在线发布日期: 2024-04-05
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!