基于分类与优化的进场航空器调度方法
CSTR:
作者:
作者单位:

南京航空航天大学民航学院,南京211106

通讯作者:

张军峰, 男, 副教授, E-mail: zhangjunfeng@nuaa.edu.cn。

中图分类号:

V335

基金项目:

国家自然科学基金 (U1933117); 南京航空航天大学科研与实践创新计划 (xcxjh20220714)。


Arrival Scheduling Based on Classification and Optimization
Author:
Affiliation:

College of Civil Aviation, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • | | | |
  • 文章评论
    摘要:

    为兼顾进场运行效率与管制工作经验,提出了一种基于分类与优化的进场调度方法。在分析进场管制特点的基础上,将进场排序问题转化为机器学习领域的分类问题,并构建随机森林分类器预测航空器着陆次序;利用综合得分机制和滑动时间窗实现进场航空器动态在线排序;针对预测着陆次序建立多目标优化模型,实现着陆时间优化;采用长沙黄花机场3组繁忙时段的进场运行数据,验证方法的可行性。结果表明:随机森林分类器预测着陆次序与实际着陆次序高度吻合,正确率达到99.00%以上;相比于传统先到先服务策略,本文方法减少了平均延误时间、平均飞行时间、最大飞行时间、最大延误时间和着陆位置变动次数;相比于常规优化方法,本文方法能够在保障优化指标的基础上,将航空器着陆位置变动由12次降为2次。

    Abstract:

    A new arrival scheduling method based on classification and optimization is proposed to balance the efficiency of arrival operation and working experiences of air traffic controllers (ATCOs). The arrival scheduling problem is transformed into a binary classification problem based on analyzing the operational characteristics of arrival control. A classifier based on the random forest algorithm is built to predict the landing sequence of arrival aircraft. The dynamic sequencing for arrival aircraft is achieved by using a composite scoring method and implementing a rolling time window mechanism. Furthermore, the landing times are optimized by concerning the landing sequence and optimization model. Finally, three groups of actual arrival operation data of Changsha Huanghua International Airport in rush hours are used to verify the feasibility of the proposed method. The results indicate that the random forest classifier’s prediction results are close to the real landing sequence results with an accuracy of more than 99.00%. Compared with the traditional first-come-first-served heuristic, the proposed method reduces the average delay, average flight time, maximum flight time, maximum delay, and variation of the landing sequence. Compared with the conventional optimization method, the proposed method reduces the number of landing position shifts from 12 to two while not significantly decreasing arrival scheduling performance.

    参考文献
    [1] BENNELL J A, MESGARPOUR M, POTTS C N. Airport runway scheduling[J]. Annals of Operations Research, 2013, 204(1): 204-249.
    [2] BENNELL J A, MESGARPOUR M, POTTS C N. Dynamic scheduling of aircraft landings[J]. European Journal of Operational Research, 2017, 258(1): 315-327.
    [3] KHASSIBA A, BASTIN F, CAFIERI S, et al. Two-stage stochastic mixed-integer programming with chance constraints for extended aircraft arrival management[J]. Transportation Science, 2020, 54(4): 855-1152.
    [4] 张军峰, 游录宝, 杨春苇, 等.基于多目标帝国竞争算法的进场排序与调度[J]. 航空学报, 2021, 42(2): 324439.ZHANG Junfeng, YOU Lubao, YANG Chunwei, et al. Arrival sequencing and scheduling based on multi-objective imperialist competitive algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 324439.
    [5] HONG Y K, CHOI B H, LEE K J, et al. Dynamic robust sequencing and scheduling under uncertainty for the point merge system in terminal airspace[J]. IEEE Transactions on Intelligent Transportations Systems, 2017, 19(9): 2933-2943.
    [6] HANCERLIOGULLARI G, RABADI G, AL-SALEM A H, et al. Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem[J]. Journal of Air Transport Management, 2013, 32: 39-48.
    [7] VADLAMANI S, HOSSEINI S. A novel heuristic approach for solving aircraft landing problem with single runway[J]. Journal of Air Transport Management, 2014, 40: 144-148.
    [8] ZHANG J F, ZHAO P L, YANG C W, et al. A new meta-heuristic approach for aircraft landing problem[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(2): 197-208.
    [9] 张军峰, 郑志祥, 葛腾腾. 基于复合分派规则的进场航班排序方法[J].交通运输工程学报, 2017, 17(3): 141-150.ZHANG Junfeng, ZHENG Zhixiang, GE Tengteng. Sequencing approach of arrival aircrafts based on composite dispatching[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 141-150.
    [10] JUNG S, HONG S, LEE K. A data-driven air traffic sequencing model based on pairwise preference learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3): 803-816.
    [11] RAMANUJAM V, BALAKRISHNAN H. Data-driven modeling of the airport configuration selection process[J]. IEEE Transactions on Human-Machine Systems, 2015, 45(4): 490-499.
    [12] ZHANG J F, ZHAO P L, ZHANG Y, et al. Criteria selection and multi-objective optimization of aircraft landing problem[J]. Journal of Air Transport Management, 2020, 82(1): 101734.
    [13] BARNHART C, BERTSIMAS D, CARAMANIS C, et al. Equitable and efficient coordination in traffic flow management[J]. Transportation Science, 2012, 46(2): 262-280.
    [14] ZHANG J F, LIU J, HU R, et al. Online four dimensional trajectory prediction method based on aircraft intent updating[J]. Aerospace Science and Technology, 2018, 77(1): 774-787.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜卓铭,张军峰,杨春苇.基于分类与优化的进场航空器调度方法[J].南京航空航天大学学报,2023,55(6):1065-1071

复制
分享
文章指标
  • 点击次数:399
  • 下载次数: 786
  • HTML阅读次数: 238
  • 引用次数: 0
历史
  • 收稿日期:2022-08-23
  • 最后修改日期:2023-01-07
  • 在线发布日期: 2023-12-05
文章二维码
您是第6562340位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!