考虑跑道复杂依赖关系的多目标飞机排序模型
CSTR:
作者:
作者单位:

1.福州大学经济与管理学院,福州 350116;2.莆田学院商学院,莆田 351100

作者简介:

陈可嘉,男,教授,博士生导师。主要研究方向:航空运输系统工程等。2010年入选首批“福建省高校杰出青年科研人才培育计划”;2011年入选“教育部新世纪优秀人才支持计划”。主持完成国家自然科学基金项目、国家社会科学基金项目、福建省社科基金重点项目等30余项。出版专著1部、教材2部,在国内外重要学术刊物和国际学术会议上发表学术论文100余篇(其中被SCI、EI检索50余篇)。获得省部级优秀成果奖2项、国际会议优秀论文奖5项。

通讯作者:

林鸿熙,男,教授, E-mail:ptulhx@163.com。

中图分类号:

V351.11

基金项目:

国家社会科学基金(18BGL003)。


Multi-objective Aircraft Sequencing Model Considering Complex Interdependent Runways
Author:
Affiliation:

1.School of Economics and Management, Fuzhou University, Fuzhou 350116, China;2.School of Business, Putian University, Putian 351100, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    考虑跑道间复杂依赖关系和依赖跑道上动态间隔约束,研究了同时存在依赖、独立跑道的多目标进离场飞机排序问题。以降低航空公司延误总成本和降低旅客总延误时间为目标,建立了跑道复杂依赖关系下的多目标规划模型。通过重庆江北机场的3个实际算例,使用ε约束法求解多目标模型的Pareto最优解集。与未增加本文两处约束的传统模型进行对比显示,额外考虑复杂依赖关系后航空公司延误总成本减少了68.5%~80.3%,旅客延误总时间减少了68.8%~77.7%,额外考虑依赖跑道上动态最小间隔时间后航空公司延误总成本减少了20.4%~43.4%,旅客总延误时间减少了29.2%~42.5%。

    Abstract:

    The multi-objective approach and departure aircraft sequencing problem with both interdependent and independent runways is studied. The complex dependence between runways and the dynamic separation constraint on dependent runways are considered. Aiming to reduce the total delay cost and passenger delay time, a multi-objective programming model under the complex interdependence relationship of runways is established. By using three examples of Jiangbei Airport in Chongqing, the Pareto optimal solution set of multi-objective model is obtained by using ε-constraint method. Compared with the traditional model without adding the two constraints, the total delay cost is reduced by 68.5% to 80.3% and the total delay time of passengers is reduced by 68.8% to 77.7% when the complex interdependence relationship is taken into account. When additional consideration is given to the dynamic minimum time interval on the interdependent runway, the total delay cost is reduced by 20.4% to 43.4% and the total passenger delay time is reduced by 29.2% to 42.5%.

    参考文献
    [1] 中国民航局. 2021年民航行业发展统计公报[M]. 北京:中国民用航空局,2022: 5-18.Civil Aviation Administration of China. Statistical bulletin of civil aviation industry development in 2021[M]. Beijing: Civil Aviation Administration of China, 2022: 5-18.
    [2] SHI W, JIANG S, LIANG X, et al. A heuristic algorithm for solving the aircraft landing scheduling problem with a landing sequence division[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2019, 102(8): 966-973.
    [3] FAYE A. A quadratic time algorithm for computing the optimal landing times of a fixed sequence of planes[J]. European Journal of Operational Research, 2018, 270(3): 1148-1157.
    [4] KHASSIBA A, BASTIN F, CAFIERI S, et al. Two-stage stochastic mixed-integer programming with chance constraints for extended aircraft arrival management[J]. Transportation Science, 2020, 54(4): 897-919.
    [5] KHASSIBA A, CAFIERI S, BASTIN F, et al. Two-stage stochastic programming models for the extended aircraft arrival management problem with multiple pre-scheduling points[J]. Transportation Research Part C, 2022, 142: 103769.
    [6] RIAHI V, NEWTON M A H, SATTAR A. Constraint-guided local search for single mixed-operation runway[C]//Proceedings of the Australasian Joint Conference on Artificial Intelligence. Wellington: IIIS, 2018.
    [7] PICARD P M, TAMPIERI A, WAN X. Airport capacity and inefficiency in slot allocation[J]. International Journal of Industrial Organization, 2019, 62: 330-357.
    [8] CHEN X D, YU H, CAO K, et al. Uncertainty-aware flight scheduling for airport throughput and flight delay optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(2): 853-862.
    [9] RODRIGUEZ-SANZ A, ARNALDO VALDES R M M, PEREZ-CASTAN J A, et al. Tactical runway scheduling for demand and delay management[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(1): 2-13.
    [10] CECEN R K, CETEK C, KAYA O. Aircraft sequencing and scheduling in TMAs under wind direction uncertainties[J]. Aeronautical Journal, 2020, 124 (1282): 1-17.
    [11] DESAI J, BHANDARI A S. A 0-1 mixed-integer program approach towards solving the stochastic aircraft sequencing problem with constant deceleration rate[C]//Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management. Singapore: IEEE, 2020.
    [12] LKLI S, MANCEL C, MONGEAU M, et al. The aircraft runway scheduling problem: A survey[J]. Computers and Operations Research, 2021, 132:105336.
    [13] NG K K H, LEE C K M, ZHANG S Z, et al. The impact of heterogeneous arrival and departure rates of flights on runway configuration optimization[J]. Transportation Letters—The International Journal of Transportation Research, 2020, 14(3): 215-226.
    [14] SALEHIPOUR A. Algorithm for single- and multiple-runway aircraft landing problem[J]. Mathematics and Computers in Simulation, 2019, 175: 179-191.
    [15] MESSAOUND M BEN, GHEDIRA K, KEFI M. Detailed mathematical programming formulations for the aircraft landing problem on a single and multiple runway configurations[C]//Proceedings of the 22nd International Conference on Knowledge-Based Intelligent Information and Engineering Systems. Belgrade: KES, 2018.
    [16] YANG Y C, GAO Z C, HE C. Stochastic terminal flight arrival and departure scheduling problem under performance-based navigation environment[J]. Transportation Research Part C, 2020, 119: 102735.
    [17] MA J, SBIHI M, DELAHAYE D. Optimization of departure runway scheduling incorporating arrival crossings[J]. International Transactions in Operational Research, 2019, 28(2): 615-637.
    [18] RIAHI V, NEWTON M A H, POLASH M M A, et al. Constraint guided search for aircraft sequencing[J]. Expert Systems with Applications, 2019, 118:440-458.
    [19] LIEDER A, STOLLETZ R. Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways[J]. Transportation Research Part E, 2016, 88: 167-188.
    [20] BEASLEY J E, KRISHNAMOORTHY M, SHARAIHA Y M, et al. Scheduling aircraft landings-the static case[J]. Transportation Science, 2000, 34 (2): 180-197.
    [21] BENCHEIKH G, BOUKACHOUR J, ALAOUI A E H. Improved ant colony algorithm to solve the aircraft landing problem[J]. International Journal of Computer Theory and Engineering, 2011, 3(2): 224-233.
    [22] SALEHIPOUR A, MODARRES M, NAENI L M. An efficient hybrid meta-heuristic for aircraft landing problem[J]. Computers and Operations Research, 2012, 40(1): 207-213.
    [23] FAYE A. Solving the aircraft landing problem with time discretization approach[J]. European Journal of Operational Research, 2015, 242(3): 1028-1038.
    [24] WEI M, SUN B, WU W, et al. A multiple objective optimization model for aircraft arrival and departure scheduling on multiple runways[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5545-5560.
    [25] 张启钱, 胡明华, 张洪海. 基于RHC-GA的多跑道进离场航班多目标动态优化模型[J]. 交通运输工程学报, 2015, 15(2): 70-99.ZHANG Qiqian, HU Minghua, ZHANG Honghai. Dynamic multi-objective optimization model of arrival and departure flights on multiple runways based on RHC-GA[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 70-99.
    [26] 魏明, 孙博, 吴维. 考虑多跑道运行模式的进离场航班排序优化模型[J]. 工业工程与管理, 2021, 26 (5): 68-73.WEI Ming, SUN Bo, WU Wei. An optimization model for inbound and outbound flight scheduling with consideration of multi-runway operation mode[J]. Industrial Engineering and Management, 2021, 26(5): 68-73.
    [27] 余江, 王大海, 蒲云. 跑道容量的概率模型及容量曲线[J]. 交通运输工程学报, 2002, 2(4): 99-102.YU Jiang, WANG Dahai, PU Yun. Runway capacity probility model and capacity curve[J]. Journal of Traffic and Transportation Engineering, 2002, 2(4): 99-102.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈可嘉,司徒腾宽,林鸿熙.考虑跑道复杂依赖关系的多目标飞机排序模型[J].南京航空航天大学学报,2023,55(6):1025-1032

复制
分享
文章指标
  • 点击次数:417
  • 下载次数: 684
  • HTML阅读次数: 224
  • 引用次数: 0
历史
  • 收稿日期:2023-04-11
  • 最后修改日期:2023-07-16
  • 在线发布日期: 2023-12-05
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!