多旋翼混合动力无人机自适应能量管理策略仿真
CSTR:
作者:
作者单位:

1.天津大学机械工程学院,天津 300072;2.天津大学内燃机研究所,天津 300072

通讯作者:

胡春明,男,研究员,E-mail:cmhu@tju.edu.cn。

中图分类号:

V233.7

基金项目:

国家自然科学基金(51476112)。


Simulation of Adaptive Energy Management Strategy for Multi-rotor Hybrid UAVs
Author:
Affiliation:

1.School of Mechanical Engineering,Tianjin University, Tianjin 300072, China;2.Internal Combustion Engine Research Institute, Tianjin University, Tianjin 300072, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为提高多旋翼混合动力无人机的运行稳定性、输出动力性和能量利用率,利用GT-Power和Simulink进行模型联合搭建,对比基于规则的能量管理策略及等效燃油最小消耗能量管理策略(Equivalent consumption minimization strategy, ECMS),设计开发了基于BP(Back propagation)神经网络优化的自适应ECMS(Adaptive-ECMS,A-ECMS)。仿真研究表明:A-ECMS在运行稳定性上,整体工况转速波动率为7.74%,较基于规则策略和ECMS都有明显降低;A-ECMS在复合扰动下和随机紊流下转速波动率分别为8.32%、7.18%,与基于规则策略和ECMS相比在突发工况下运行更为稳定。A-ECMS能有效提高混合动力系统动力性能,使发动机处于经济工况10 kW;可根据荷电状态(State of charge, SOC)变化实时对电池功率进行调整。A-ECMS平均燃油消耗率为297.585 g/(kW?h),整体燃油消耗量为3 755.31 g,与基于规则策略和ECMS相比明显较低,在各工况下运行时发动机工况点集中于燃油经济区,有效提高了系统经济性。

    Abstract:

    In order to improve the operating stability, output power and energy utilization of multi-rotor hybrid drones, GT-Power and Simulink are used to jointly build models, and rules-based consumption management strategy and equivalent consumption minimization strategy (ECMS) are compared. Adaptive-ECMS (A-ECMS)based on back propagation (BP) neural networks optimization is designed and developed. Simulation shows that in terms of operational stability of A-ECMS, the overall operating speed fluctuation rate is 7.74%, which is significantly lower than those of the rule-based strategy and ECMS. The speed fluctuation rate of A-ECMS under compound disturbance and random turbulence is 8.32%, 7.18%, respectively. Compared with rule-based strategy and ECMS, it operates more stably under emergency conditions. A-ECMS can effectively improve the power performance of the hybrid system, allowing the engine to operate at an economical operating condition of 10 kW, and the battery power can be adjusted in real time according to changes in the state of charge (SOC). The average fuel consumption rate of A-ECMS is 297.585 g/(kW?h), and the overall fuel consumption is 3 755.31 g, which is significantly lower than those of the rule-based strategy and ECMS. The engine operating points are concentrated in the fuel economy zone when running under various operating conditions. The proposed method can effectively improve system economy.

    参考文献
    [1] 张红兴. 对置活塞二冲程内燃机用于无人机的研究[D]. 哈尔滨:哈尔滨工业大学,2018.ZHANG Hongxing. Study of an opposed-piston two-stroke internal combustion engine for unmanned aerial vehicles[D]. Harbin: Harbin Institute of Technology,2018.
    [2] 刘莉,杜孟尧,张晓辉,等.太阳能/氢能无人机总体设计与能源管理策略研究[J].航空学报,2016,37(1):144-162.LIU Li, DU Mengyao, ZHANG Xiaohui, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J].Chinese Journal of Acta Aeronautica et Astronautica Sinica,2016,37(1): 144-162.
    [3] RAJENDRAN P, SMITH H. The development of a small solar powered electric unmanned aerial vehicle systems[J].Applied Mechanics and Materials,2013,465/466: 345-351.
    [4] 胡雨. 通用飞机油电混合动力系统设计与优化[D]. 沈阳: 沈阳航空航天大学,2014.HU Yu. Design and optimisation of hybrid power systems for general purpose aircraft[D]. Shenyang: Shenyang University of Aeronautics and Astronautics,2014.
    [5] 孔祥浩,张卓然,陆嘉伟,等.分布式电推进飞机电力系统研究综述[J].航空学报,2018,39(1): 51-67.KONG Xianghao, ZHANG Zhuoran, LU Jiawei, et al.Review of electric power system of distributed electric propulsion aircraft[J].Chinese Journal of Acta Aeronautica et Astronautica Sinica,2018,39(1):51-67.
    [6] HUNG J Y, GONZALEZ L F. On parallel hybrid-electric propulsion system for unmanned aerial vehicles[J].Progress in Aerospace Sciences,2012,51: 1-17.
    [7] ZHANG Xiaohui, LIU Li, DAI Yueling, et al. Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs[J].International Journal of Hydrogen Energy,2018,43(21): 10094-10103.
    [8] LEI T, WANG Y, JIN X, et al. An optimal fuzzy logic-based energy management strategy for a fuel cell/battery hybrid power unmanned aerial vehicle[J].Aerospace,2022,9(2): 115.
    [9] MOHAMED N B, ZHIBIN Z. A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects[J].Applied Energy,2019,255: 113823.
    [10] 胡春明,李诚,刘娜,等.无人机增程式电推进系统双模糊能量管理策略仿真[J].航空动力学报,2021,36(12): 2652-2662.HU Chunming, LI Cheng, LIU Na, et al. Simulation on dual-fuzzy energy management strategy of UAV extended range electric propulsion system[J]. Chinese Journal of Journal of Aerospace Power,2021,36(12):2652-2662.
    [11] 张晓辉,刘莉,戴月领.燃料电池无人机能源管理与飞行状态耦合[J].航空学报,2019,40(7): 92-108.ZHANG Xiaohui, LIU Li, DAI Yueling. Coupling effect of energy management and flight state for fuel cell powered UAVs[J].Acta Aeronautica et Astronautica Sinica,2019, 40(7): 92-108.
    [12] 胡春明,闫丁洋,刘娜,等.油电混合动力无人机能量管理策略的对比仿真研究[J].内燃机工程,2022,43(4): 74-83.HU Chunming, YAN Dingyang, LIU Na, et al.Comparison and simulation research on energy management strategies of oil-electric hybrid unmanned aerial vehicle[J].Chinese Journal of Chinese Internal Combustion Engine Engineering,2022,43(4): 74-83.
    [13] DONATEO T, PASCALIS C, FICARELLA A. An application of the ECMS strategy to a Wankel hybrid electric UAV[C]//Proceedings of 9th International Conference on Innovation in Aviation & Space.[S.l.]: [s.n.], 2019.
    [14] 廖卫中,宗群,马亚丽.小型四旋翼无人机建模与有限时间控制[J].控制理论与应用,2015,32(10): 1343-1350.LIAO Weizhong, ZONG Qun, MA Yali. Modeling and finite-time control for quad-rotor mini unmanned aerial vehicles[J].Chinese Journal of Chinese Control Theory &Applications,2015,32(10): 1343-1350.
    [15] 程智博.四旋翼无人机燃料电池混合动力系统研究[D].长春:吉林大学,2022.CHENG Zhibo. Research on fuel cell hybrid power system for quadcopter UAVs[D].Changchun: Jilin University,2022.
    [16] 项松,王吉,张利国,等.一种高效率螺旋桨设计方法[J].航空动力学报,2015,30(1): 136-141.XIANG Song, WANG Ji, ZHANG Liguo, et al.A design method for high efficiency propeller[J].Chinese Journal of Journal of Aerospace Power, 2015,30(1):136-141.
    [17] RAJENDRAN P, JAYAPRAKASH A. Numerical performance analysis of a twin blade drone rotor propeller[J].Materials Today:Proceedings,2023,80:492-498.
    [18] PENG J,HE H, XIONG R. Rule based energy management strategy for a seriesa parallel plug-in hybrid electric bus optimized by dynamic programming[J].Applied Energy,2017,185: 1633-1643.
    [19] PAGANELLI G, GUERRA T M, DELPRAT S, et al. Simulation and assessment of power control strategies for a parallel hybrid car[J]. Journal of Automobile Engineering,2000,214(7): 705-717.
    [20] 仇多洋.基于行驶工况识别与预测的混合动力汽车能量管理研究[D].合肥:合肥工业大学,2019.QIU Duoyang. Research on energy management of hybrid electric vehicles based on driving condition recognition and prediction[D]. Hefei: Hefei University of Technology,2019.
    [21] 余胜威. MATLAB优化算法案例分析与应用[M].北京: 清华大学出版社,2014.
    [22] 陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社,2013.
    [23] 杨跃能,郑伟,吴杰. 变化风场中无人机的动力学建模及飞行特性分析[J]. 飞行力学,2011,29(3): 8-11.YANG Yueneng, ZHENG Wei, WU Jie. Dynamics modeling and analysis of an unmanned aerial vehicle with wind effects[J].Chinese Journal of Flight Dynamics,2011,29(3): 8-11.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨明堂,胡春明,徐胤泽,杜春媛.多旋翼混合动力无人机自适应能量管理策略仿真[J].南京航空航天大学学报,2023,55(6):1004-1015

复制
分享
文章指标
  • 点击次数:858
  • 下载次数: 1708
  • HTML阅读次数: 548
  • 引用次数: 0
历史
  • 收稿日期:2023-10-19
  • 最后修改日期:2023-11-30
  • 在线发布日期: 2023-12-05
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!