结合局部高清图像的遥感集群目标区域超分辨率重建
作者:
作者单位:

1.哈尔滨工业大学航天学院,哈尔滨 150001;2.哈尔滨工业大学(深圳)空间科学与应用研究院,深圳 518055

作者简介:

通讯作者:

岳程斐,男,博士,副教授,博士生导师,E-mail: yuechengfei@hit.edu.cn。

中图分类号:

TP701

基金项目:


Remote Sensing Image Super-Resolution Reconstruction with Local High-Resolution Clustered Object Images
Author:
Affiliation:

1.School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;2.Institute of Space Technology and Applied Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,卫星遥感图像的应用场景越来越广泛。但是由于采集设备有限及其成本限制,卫星传感器获取到的图像通常不具备足够的分辨率且分布不够均匀,同时部分目标聚集成群难以分辨,导致低分辨率遥感图像在目标检测与识别等空间语义理解任务上难以满足准确定位和分类所有目标的要求。相比于一次性采集完整高分辨率遥感图像,已有遥感图像通常在局部区域具有相对清晰的高分辨率,且具备足够的细节信息用于分辨目标群,而传统的遥感图像超分辨率重建方法主要关注遥感图像自身的全局特征,通过图像的全局特征进行分辨率和像素扩充,而忽视了遥感图像的细节信息。为了解决这些挑战,提出了一种将遥感图像局部聚集群目标区域的细节特征信息引入到完整遥感图像的采样重建中的方法,通过多层级的神经网络来提取不同尺度的图像特征,并通过残差学习的方式将这些特征进行融合并重建。在实验中,该方法相比主流现有的遥感图像超分辨率重建方法,在视觉效果和测试实验上都取得了更好的结果,证明该方法可以有效借助局部图像的像素信息,显著地提高全局遥感图像的细节效果和优化集群目标区域的分辨能力,提升了遥感图像的质量和可用性。

    Abstract:

    In recent years, the application scenarios of satellite remote sensing images have become increasingly diverse. However, due to limited collection equipment and cost constraints, the images obtained by satellite sensors usually do not have sufficient resolution and are not uniformly distributed, which is difficult to distinguish some clustered objects. Low-resolution remote sensing images are not suitable for semantic understanding tasks such as object detection and recognition to accurately locate and classify all objects. Compared to obtaining complete high-resolution remote sensing images at once, existing remote sensing images usually have relatively clear high resolution in local areas and sufficient detailed information for distinguishing object groups. Traditional remote sensing image super-resolution reconstruction methods mainly focus on the global features of remote sensing images, expanding resolution and pixels based on global features of images, while ignoring the details of remote sensing images. To address this problem, this paper proposes a method that introduces detailed information about local clustered object areas in local images in the reconstruction of complete remote sensing images. Specifically, the proposed method uses a multi-level neural network to extract image features of different scales and then uses residual learning to merge and reconstruct these features. In the experiments of this paper, the proposed method achieved better visual effects and numerical results compared to several existing remote sensing image super-resolution reconstruction methods. This indicates that the proposed method can effectively utilize the pixel information of local images, significantly improve the details of global remote sensing images and optimize the recognition capability of the group objects area, and enhance the quality and availability of remote sensing images in a low-cost way.

    参考文献
    相似文献
    引证文献
引用本文

阎菩提,邱实,岳程斐.结合局部高清图像的遥感集群目标区域超分辨率重建[J].南京航空航天大学学报,2023,55(6):956-965

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-25
  • 最后修改日期:2023-11-30
  • 录用日期:
  • 在线发布日期: 2023-12-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司