基于改进蝴蝶优化算法的无人机3-D航迹规划方法
作者:
作者单位:

中国人民解放军63893部队,洛阳 471000

作者简介:

通讯作者:

邹永杰,男,高级工程师,E-mail:33764715@qq.com。

中图分类号:

V279;V249

基金项目:


3-D Track Planning Method of UAV Based on Improved Butterfly Optimization Algorithm
Author:
Affiliation:

Unit 63893 of the Chinese People’s Liberation Army , Luoyang 471000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基本蝴蝶优化算法(Butterfly optimization algorithm,BOA)在进行无人机(Unmanned aerial vehicle, UAV)三维航迹规划时存在的搜索速度慢、搜索精度低以及易陷入局部最优等问题,提出一种改进的蝴蝶优化算法(Improved butterfly optimization algorithm,IBOA)。在全局搜索阶段提出对数自适应惯性权重策略和动态更新调节策略,提高了算法全局搜索能力和搜索精度。同时,在局部搜索阶段,提出一种动态概率余弦选择策略,增加位置更新多样性,避免陷入局部最优。首先,为检验改进算法与基本算法的寻优性能,在部分标准多元函数上进行仿真对比。对比结果表明,改进算法对复杂函数具有较强的寻优能力,能在更短时间内找到全局最优解。然后,在二维路径规划仿真中对比了改进算法与PSO算法性能,从对比结果看,IBOA具有更优的规划效果。接着,利用山峰模拟函数对UAV三维航迹规划进行建模,将改进算法应用到航迹规划中,利用MATLAB仿真对比了不同复杂度环境下的航迹规划效果。仿真实验表明:相同实验条件下,该优化算法较BOA综合适应度值减小21.9%,具有搜索速度快、搜索精度高等优点,能够有效地指导UAV在三维环境中完成自主导航避障任务。

    Abstract:

    An improved butterfly optimization algorithm (IBOA) is proposed to solve the problems of slow search speed, low search accuracy and easy to fall into local optimization when the basic butterfly optimization algorithm (BOA) is used in the 3-D path planning of unmanned aerial vehicle (UAV). In the global search phase, a logarithmic adaptive inertia weight strategy and a dynamic update adjustment strategy are proposed to improve the global search ability and search accuracy of the algorithm. At the same time, in the local search phase, a dynamic probability cosine selection strategy is proposed to increase the diversity of location updates and avoid falling into local optimization. Firstly, in order to test the optimization performance of the improved algorithm and the basic algorithm, the simulation comparison is carried out on some standard multivariate functions. The comparison results show that the improved algorithm has strong optimization ability for complex functions and can find the global optimal solution in a shorter time. Then, the peak simulation function is used to model the three-dimensional path planning of UAV, and the improved algorithm is applied to the path planning. The track planning effects under different complexity environments are compared by MATLAB simulation. The simulation experiments show that under the same experimental conditions, the comprehensive fitness value of the optimization algorithm is reduced by 21.9% compared with the basic butterfly algorithm, which has the advantages of fast search speed and high search accuracy. It can effectively guide the UAV to complete the task of autonomous navigation and obstacle avoidance in a 3-D environment.

    参考文献
    相似文献
    引证文献
引用本文

丁敏,夏兴宇,邹永杰,张乐,刘正堂.基于改进蝴蝶优化算法的无人机3-D航迹规划方法[J].南京航空航天大学学报,2023,55(5):851-858

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-09
  • 最后修改日期:2023-05-02
  • 录用日期:
  • 在线发布日期: 2023-10-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司