基于改进EKF的IMU动态误差抑制
作者:
作者单位:

1.陕西理工大学数学与计算机科学学院,汉中 723000;2.陕西理工大学电气工程学院,汉中 723000;3.陕西理工大学机械工程学院,汉中 723000

作者简介:

通讯作者:

李娜,女,讲师,E-mail:ln1027@126.com。

中图分类号:

TP391

基金项目:

陕西省自然科学基础研究项目(2022JM-383);陕西省重点研发计划项目(2022FP-027)。


IMU Dynamic Error Suppression Based on Improved EKF
Author:
Affiliation:

1.School of Mathematics and Computer Science,Shaanxi University of Technology,Hanzhong 723000,China;2.School of Electrical Engineering, Shaanxi University of Technology, Hanzhong 723000,China;3.School of Mechanical Engineering, Shaanxi University of Technology,Hanzhong 723000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    惯性测量单元(Inertial measurement unit,IMU)三轴欧拉角的解算数据精度和抗干扰性能常受到系统高频噪音以及震动干扰的影响。基于此问题,本文提出一种适合嵌入式系统的低计算量、实时性好、低成本的动态误差抑制方法。该方法通过在扩展卡尔曼滤波器(Extended Kalman filter, EKF)算法前端引入一种无限脉冲响应滤波器(Infinite impulse response-extended Kalman filter,IIR-EKF),借助于二阶巴特沃斯低通滤波器(Butterworth filter, BF)对数据进行预处理来帮助EKF抑制高频或强干扰。IIR-EKF算法在STM32H743微控制器中实现,经过几种实验对比验证,结果表明:在EKF单独作用时,其数据方差较大,遇到震动干扰时,瞬时值误差较大;在无迹卡尔曼滤波(Unscented Kalman filter, UKF)单独作用时,虽然其并不依赖初始噪音参数,其数据方差比EKF小,但还不足以满足要求;在加入BF后,数据方差明显减小,瞬时误差被大幅抑制,增强了系统的稳定性、抗干扰能力。

    Abstract:

    The data accuracy and anti-interference of inertial measurement unit (IMU)three-axis Euler angle are affected by high frequency noise and strong instantaneous interference. To solve this problem, this paper proposes a dynamic error suppression method with low computational burden, good real-time performance and low cost, which is more suitable for embedded systems. In this method, an infinite impulse response-extended Kalman filter (IR-EKF) is introduced to the front end of the EKF algorithm. The data are preprocessed with a second-order low-pass Butterworth filter (BF) to help EKF suppress high frequency or strong interference. The IIR-EKF algorithm is implemented in the STM32H743 microcontroller. The experimental results show that the data variance is very big when the EKF acts alone, and great discrepancy occurs when strong interferences are encountered. When unscented Kalman filter (UKF) acts alone, the data variance is smaller than that of EKF. Although it does not depend on the initial noise parameters, it does not meet the requirements. After the addition of the second-order BF, the data variance is significantly reduced, the instantaneous error is greatly suppressed, and the stability and anti-interference ability of the system are enhanced.

    参考文献
    相似文献
    引证文献
引用本文

李娜,贺海育,景敏,李坤,贾伟.基于改进EKF的IMU动态误差抑制[J].南京航空航天大学学报,2023,55(4):718-724

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-13
  • 最后修改日期:2022-11-30
  • 录用日期:
  • 在线发布日期: 2023-08-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司