低雷诺数下翼型表面局部振动控制研究
CSTR:
作者:
作者单位:

1.南京航空航天大学航空学院,南京 210016;2.南京航空航天大学航空航天结构力学及控制全国重点实验室,南京 210016

通讯作者:

董昊,男,教授,博士生导师,E-mail: donghao@nuaa.edu.cn。

中图分类号:

V211


Investigation on Local Vibration Control of Airfoil at Low Reynolds Number
Author:
Affiliation:

1.College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;2.State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    数值模拟研究了Re=4×104时小迎角下表面局部振动激励对SD8020翼型气动特性的影响,从时均化和非定常流动两个方面分析了频率和幅值两个振动激励参数对于翼型分离和转捩特性的作用。结果表明,迎角2°和3°时局部振动激励能够有效对流场施加影响,促进层流分离泡结构的转变,改善翼型的气动性能。同时研究发现,振动频率在不同迎角下对翼型气动特性和流场结构的影响规律类似,频率f=32 Hz时气动性能提升最明显;而随着振动幅值的增加,层流分离泡长度减小且整体向前缘移动。进一步非定常分析表明,迎角2°和3°时流场在同一振动激励参数下表现出相似的非定常涡演化过程,弦向位置的压力脉动频率与振动激励频率一致,此时流场的非定常流动特征由振动激励主导。

    Abstract:

    The effect of surface local vibration excitation on the aerodynamic characteristics of SD8020 airfoil under small angles of attack is studied by numerical simulation at Re=4×104. The influence of vibration frequency and amplitude on the flow characteristics of airfoil is studied from time averaged and unsteady aspects. The results show that local vibration at 2° and 3° can effectively affect flow field, promote the transformation of the laminar separation bubble structure and improve the aerodynamic performance of the airfoil. It is found that the effects of vibration frequency on aerodynamic characteristics and flow field structure of airfoil are similar under different angles of attack. When f=32 Hz, the improvement of aerodynamic characteristic is the most effective. With the increase of the vibration amplitude, the separation bubble structure span becomes smaller and moves towards the leading edge. The further unsteady analysis shows that the evolution process of unsteady vortex presents the similar mode under the same control strategy. And pressure pulsation frequency at chordal position is consistent with the vibration excitation frequency. It can be found that the unsteady characteristics of the flow field are dominated by the vibration excitation under this research condition.

    参考文献
    [1] MUELLER T J, BATIL S M. Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers[J]. AIAA Journal, 1982, 20(4): 457-463.
    [2] 朱志斌,刘强,白鹏.低雷诺数翼型层流分离现象大涡模拟方法[J].空气动力学学报,2019,37(6): 915-923.ZHU Zhibin, LIU Qiang, BAI Peng. Large eddy simulation method for the laminar separation phenomenon on low Reynolds number airfoils[J]. Acta Aerodynamica Sinica, 2019, 37(6): 915-923.
    [3] XIA T, DONG H, YANG L, et al. Investigation on flow structure and aerodynamic characteristics over an airfoil at low Reynolds number—A review[J]. AIP Advances, 2021, 11(5): 050701.
    [4] SELIG M S, LYON C A, GIGUERE P, et al. Summary of low-speed airfoil data[J]. Soar Technology Publications, 1995,2: 230-232.
    [5] MUELLER T J, DELAURIER D. Aerodynamics of small vehicles[J]. Annual Review of Fluid Mechanics, 2003, 35(1): 89-111.
    [6] BAI P, LI F, ZHAN H, et al. Study about the non-linear and unsteady laminar separation phenomena around the airfoil at low Reynolds number with low incidence[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(2): 024703.
    [7] 张志勇,王团团,陈志华,等.低雷诺数下吹吸气射流对NACA0012翼型气动性能的影响[J].空气动力学学报,2020,38(1): 58-65.ZHANG Zhiyong, WANG Tuantuan, CHEN Zhihua, et al. The effect of blowing/suction jet on the aerodynamic performance of airfoil NACA0012 at low Reynolds number[J].Acta Aerodynamica Sinica, 2020,38(1): 58-65.
    [8] WANG L, FENG L H, LIANG Y, et al. Vortex control strategy for unsteady aerodynamic optimization of a plunging airfoil at a low Reynolds number[J]. Physics of Fluids, 2021, 33(11): 117110.
    [9] CAO S, LI Y, ZHANG J, et al. Lagrangian analysis of mass transport and its influence on the lift enhancement in a flow over the airfoil with a synthetic jet[J]. Aerospace Science and Technology, 2019, 86: 11-20.
    [10] CHEN H, ZHOU L, MENG X. Aerodynamic characteristics and plasma flow control of static hysteresis over an airfoil at low Reynolds numbers[C]//Proceedings of the 2018 9th Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). Singapore:Springer, 2019.
    [11] 裘进浩,季宏丽,徐志伟,等. 智能材料与结构及其在智能飞行器中的应用[J]. 南京航空航天大学学报, 2022,54(5): 867-888.QIU Jinhao, JI Hongli, XU Zhiwei, et al. Smart materials and structures and their applications on smart aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 867-888.
    [12] GORDNIER R E. High fidelity computational simulation of a membrane wing airfoil[J]. Journal of Fluids and Structures, 2009, 25(5): 897-917.
    [13] KANG W, LEI P, ZHANG J, et al. Effects of local oscillation of airfoil surface on lift enhancement at low Reynolds number[J]. Journal of Fluids and Structures, 2015, 57: 49-65.
    [14] JONES G, SANTER M, PAPADAKIS G. Control of low Reynolds number flow around an airfoil using periodic surface morphing: A numerical study[J]. Journal of Fluids and Structures, 2018, 76: 95-115.
    [15] LEI J, ZHANG J, NIU J. Effect of active oscillation of local surface on the performance of low Reynolds number airfoil[J]. Aerospace Science and Technology, 2020, 99: 105774.
    [16] 裘进浩,李大伟,聂瑞,等.增加翼型升力的局部振动流动控制技术[J].南京航空航天大学学报,2012,44(5): 638-644.QIU Jinhao, LI Dawei, NIE Rui, et al. Vibration flow control technology for increasing lift of airfoil[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5): 638-644.
    [17] 李冠雄,马东立,杨穆清,等.低雷诺数翼型局部振动非定常气动特性[J].航空学报,2018,39(1): 118-130.LI Guanxiong, MA Dongli, YANG Muqing, et al. Unsteady aerodynamic characteristics of airfoil with local oscillation at low Reynolds number[J]. Acta Astronautica Sinica,2018, 39(1): 118-130.
    [18] VAN DRIEST E R, BLUMER C B. Boundary layer transition-freestream turbulence and pressure gradient effects[J]. AIAA Journal, 1963, 1(6): 1303-1306.
    [19] YARUSEVYCH S, SULLIVAN P E, KAWALL J G. On vortex shedding from an airfoil in low-Reynolds-number flows[J]. Journal of Fluid Mechanics, 2009, 632: 245-271.
    [20] XIA T, DONG H, WU J, et al. The nonlinear lift coefficient characteristics and active flow control of a symmetrical airfoil at a low Reynolds number[J]. Physics of Fluids, 2022, 34(11): 113602.
    [21] MARXEN O, HENNINGSON D S. The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble[J]. Journal of Fluid Mechanics, 2011, 671: 1-33.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金周,夏天宇,董昊.低雷诺数下翼型表面局部振动控制研究[J].南京航空航天大学学报,2023,55(4):676-685

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-25
  • 最后修改日期:2023-03-23
  • 在线发布日期: 2023-08-05
文章二维码
您是第6587700位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!