多涵道无人机设计及悬停性能数值仿真
CSTR:
作者:
作者单位:

南京航空航天大学能源与动力学院,南京 210016

通讯作者:

王志强,男,博士,副教授,E-mail:wangzq1981@126.com。

中图分类号:

V279.2

基金项目:

基础加强计划技术领域基金(2021-JCJQ-JJ-0785)。


Design of Multi-ducted UAV and Its Numerical Simulation on Hover Performance
Author:
Affiliation:

College of Energy and Power Engineering,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对无人机空中自主对接和组合飞行任务需求设计了6涵道螺旋桨无人机气动构型。运用数值模拟对该型无人机进行悬停工况气动特性研究,研究不同悬停转速下整机气动性能的变化,并在涵道环括工况下对螺旋桨进行气动优化。研究结果表明:螺旋桨是悬停升力的主要来源,随着转速变化,涵道升力始终占总升力的17%左右;阻力来自机体上表面和电机支架的迎风阻力,支架的阻力达到涵道螺旋桨总升力的10%;随着桨盘载荷提升,无人机功率载荷降低;涵道的存在影响了螺旋桨的滑流特性,造成桨盘平面轴向速度增加,截面翼型迎角变小,工作效率降低,经过合理调整其扭转角分布螺旋桨效率得到提升,拉力提高3.3%,效率提高2.9%。

    Abstract:

    In order to meet the requirements of autonomous docking and combined flight of unmanned aerial vehicles (UAVs), the aerodynamic configuration of six-ducted UAV was designed. The aerodynamic characteristics of the UAV in hover condition were studied by numerical simulation, the aerodynamic performance changes of the whole machine under different propeller speeds were studied, and the aerodynamic optimization of the propeller was carried out under the duct condition. The results show that the propeller is the main source of hover lift, and with the change of rotation speed, the lift force of the duct always accounts for about 17% of the total lift force. The resistance comes from the upper surface of the vehicle and the motor support, which reaches 10% of the total lift of the UAV. With the increase of the propeller plate load, the power load of UAV decreases. The presence of the duct affects the slip flow characteristics of the propeller, resulting in the increase of the axial speed of the propeller disc, the decrease of the angle of attack of the section airfoil, and the decrease of the working efficiency. By adjusting the distribution of the torsion angle, the propeller efficiency is improved, the lift is increased by 3.3%, and the efficiency is increased by 2.9%.

    参考文献
    [1] 雷瑶. Hex-rotor无人机多旋翼流场数值模拟与试验研究[D]. 长春:中国科学院,2013.Lei Yao. Aerodynamic of a Hex-rotor UAV:Numerical simulation and experimental study[D]. Chang-chun: University of Chinese Academy of Sciences,2013.
    [2] AUSTIN R. Unmanned aircraft systems:UAVs design, development, and deployment[J]. Journal Publications Chestnet. org, 2010,79(50): 31-36.
    [3] Valavanis K P. Advances in unmanned aerial vehicles: State of the art and the road to autonomy[M]. New York: Springer,2013.
    [4] Ganguli R.A survey of recent developments in rotor craft design optimization[J].Journal of Aircraft, 2004,41(3): 493-510.
    [5] Lyon D H. A military perspective on small unmanned aerial vehicles[J]. IEEE Instrumentation & Measurement Magazine,2004,7(3): 27-31.
    [6] 阎超, 于剑, 许晶磊, 等. CFD模拟方法的发展成就与展望[J].力学进展,2011,41(5): 562-589.Yan Chao, Yu Jian, Xu Jinglei, et al. On the achievement and prospects for the methods of computational fluid dynamic[J].Advances in Mechanics,2011,41(5): 562-589.
    [7] 徐嘉, 范宁军, 赵澍. 涵道飞行器涵道本体气动特性研究[J].弹箭与制导学报,2009,29(4): 174-178.Xu Jia, Fan Ningjun, Zhao Shu. The study on aerodynamic characteristics of duct body of ducted fan aircraft[J].Journal of Projectiles,Rockets,Missiles and Guidance,2009,29(4): 174-178.
    [8] 许和勇, 叶正寅. 基于非结构嵌套网格的涵道螺旋桨数值模拟[J].空气动力学学报, 2013,31(3): 36-39.Xu Heyong, Ye Zhengyin. Numerical simulation of ducted-propeller system using unstructured overset grids[J]. Journal of Aerospace Power, 2013,31(3): 36-39.
    [9] 杨加明, 戴良忠, 丛伟.涵道共轴双旋翼空气动力学特性分析[J]. 弹箭与制导学报, 2013, 33(3): 126-128.Yang Jiaming, Dai Liangzhong, Cong Wei. Aerodynamic characteristics of ducted co-axial rotor[J].Journal of Projectiles,Rockets,Missiles and Guidance,2013,33(3): 126-128.
    [10] 姜悦宁. 涵道共轴双旋翼无人机气动外形关键技术研究[D]. 长春:中国科学院,2017.Jiang Yuening. Key technology research on aerodynamic shape of ducted co-axial rotor UAV[D]. Changchun: University of Chinese Academy of Sciences,2017.
    [11] Akturk A,Camci C. Tip clearance investigation of a ducted fan used in VTOL unmanned aerial vehicles—Part I: Baseline experiments and computational validation[J].Journal of Turbomachinery, 2014,136(2): 1-9.
    [12] 李悦.涵道共轴双旋翼无人机系统设计及实验[D].杭州:浙江大学,2017.Li Yue. The design of a ducted coaxial rotor aircraft and experimental study[D]. Hangzhou: Zhejiang University,2017.
    [13] Hrishikeshavan V, Chopra I. Performance,flight testing of a shrouded rotor micro air vehicle in edgewise gusts[J]. Journal of Aircraft, 2012,49(1):193-205.
    [14] 蔡红名, 昂海松. 一种新型可倾转有翼微型涵道飞行器的气动特性实验研究[J].空气动力学学报,2012,30(6): 777-781.Cai Hongming, Haisong ANG. Experiment on aerodynamic characteristics of a novel micro tilt ducted fan aircraft with wings[J]. Journal of Aerospace Power,2012,30(6): 777-781.
    [15] Hrishikeshavan V, Bogdanowicz C, Chopra I. Experimental investigation of performance of a wing-propeller System for a quad-rotor-biplane micro air vehicle: AIAA 2013-1784[R]. [S.l.]: AIAA, 2013.
    [16] BOURTSEV B N,SELEMENEV S V.Fan-in-fin performanceat hover computational method[C]//Proceedings of the 26th European Rotorcraft Forum. Hague: [s.n.], 2000.
    [17] 谈炜荣.直升机涵道尾桨气动特性的CFD分析[D].南京:南京航空航天大学, 2008.Tan Weirong. Analysis on aerodynamic characteristics of helicopter ducted tail rotor using CFD[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2008.
    [18] 李海.涵道共轴双旋翼无人机总体设计及气动设计研究[D].长春:中国科学院,2021.Li Hai. Research on the overall design and aerodynamic characteristics of a ducted coaxial rotor UAV[D].Changchun: University of Chinese Academy of Sciences,2021.
    [19] LEE S W, Kim J k. Numerical investigation on the hovering performance of contrarotating ducted rotor for micro air vehicle[J].Microsystem Technologies,2020,26: 3569-3580.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柳莳春,王志强,李传鹏,屠宝锋.多涵道无人机设计及悬停性能数值仿真[J].南京航空航天大学学报,2023,55(4):658-666

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-10
  • 最后修改日期:2023-01-12
  • 在线发布日期: 2023-08-05
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!