涡轮榫接疲劳寿命评估及验证:研究现状及展望
CSTR:
作者:
作者单位:

1.北京航空航天大学航空发动机研究院,北京 100191;2.北京航空航天大学航空发动机结构强度北京市重点实验室,北京 100191;3.中小型航空发动机联合研究中心,北京 100191;4.北京航空航天大学能源与动力工程学院, 北京 100191;5.中国航发湖南动力机械研究所,株洲 412002;6.中国航发四川燃气涡轮研究院,成都 621300

作者简介:

胡殿印,女,教授,博士生导师,国家级领军人才,研究方向为发动机结构强度及疲劳可靠性。主持“两机”基础研究项目、工信部民机科研、科工局技术基础项目、国家自然科学基金、教育部博士点基金、航空科学基金、产学研基金等30余项;授权国家发明专利50余项,发表SCI、EI论文130余篇,主编出版学术专著2部、教材1部;获省部级科技奖励3项。通信作者:胡殿印,E-mail:hdy@buaa.edu.cn。

基金项目:

国家自然科学基金(52022007);国家科技重大专项(2017-IV-0004-0041, J2019-IV-0009-0077, J2019-IV-0016-0084)。


Fatigue Life Assessment and Verification of Turbine Attachment: Review and Prospects
Author:
Affiliation:

1.Research Institute of Aero-Engine, Beihang University, Beijing 100191, China;2.Beijing Key Laboratory of Aero-Engine Structure and Strength, Beihang University, Beijing 100191, China;3.United Research Center of Mid-Small Aero-Engine, Beijing 100191, China;4.School of Energy and Power Engineering, Beihang University, Beijing 100191, China;5.Hunan Aviation Powerplant Research Institute, Aero Engine Corporation of China, Zhuzhou 412002, China;6.Sichuan Gas Turbine Research Institute, Aero Engine Corporation of China, Chengdu 621300, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [119]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    介绍了涡轮榫接结构疲劳寿命评估技术的研究现状,分别从多场载荷分析、裂纹萌生寿命评估、裂纹扩展模拟和试验技术等方面探讨了现有研究的进展、不足以及发展趋势,重点论述了涡轮榫接结构使用寿命和损伤容限的评估方法。结果表明:现有的分析和试验方法能基本实现涡轮榫接的疲劳寿命评估,但由于各种局限性,工程适用性亟待提高,仍需稳健的载荷降阶分析方法、基于物理机制和数据驱动的寿命评估方法、载荷历程相关的裂纹扩展寿命评估方法和复杂热力环境下的试验技术,从而建立先进航空发动机涡轮榫接结构疲劳寿命评估及验证体系。

    Abstract:

    Research related to fatigue life assessment of turbine attachment was introduced. The progress, shortcomings, and development trends of existing research were discussed in terms of multi-field load analysis, crack initiation life assessment, crack propagation analysis, and test techniques, respectively, focusing on the methods for assessing the service life and damage tolerance of turbine attachment. The results show that the existing analysis and test methods can basically achieve the fatigue life assessment of turbine attachment, but due to various limitations, the engineering applicability needs to be improved. It is necessary to conduct research on robust reduction order methods for load analysis, life assessment methods based on physical mechanisms and data-driven, crack growth simulation under variant loading amplitude, and test techniques in complex thermomechanical environments, and to develop a system to support the fatigue life assessment and validation of turbine attachment in advanced aero-engine.

    参考文献
    [1] 航空燃气涡轮发动机结构强度设计准则编审组. 航空燃气涡轮发动机结构强度设计准则[M]. 成都: 四川燃气涡轮研究院, 2018.Editorial and Review Group. Structural strength design guidelines for aircraft turbine engine[M]. Chengdu: Sichuan Gas Turbine Research Institute, 2018.
    [2] Department of Defense. Engine structural integrity program: MIL-HDBK-1783B[S]. Washington DC: Department of Defense, 2004.
    [3] 航空工业总公司. 航空发动机结构完整性指南:GJB/Z 101—97[S]. 北京: 国防科学技术工业委员会, 1997.Aviation Industry Corporation. Engine structural integrity guidance: GJB/Z 101--97[S]. Beijing: Commission of Science, Technology and Industry for National Defense, 1997.
    [4] 中国人民解放军总装备部. 航空涡轮喷气和涡轮风扇发动机通用规范: GJB 241A—2010 [S]. 北京: 总装备部军标出版发行部, 2010.General Armament Department of PLA. General specification for aircraft turbojet and turbofan engine: GJB 241A—2010[S]. Beijing: General Equipment Department Military Standard Publishing and Distribution Department, 2010.
    [5] HOU G, WANG J, LAYTON A. Numerical methods for fluid-structure interaction: A review[J]. Communications in Computational Physics, 2012, 12(2):337-377.
    [6] CABOS C, IHLENBURG F. Vibration analysis of ships with coupled finite and boundary elements[J]. Journal of Computational Acoustics, 2003,11(1): 91-114.
    [7] YOUNG Y L, CHAE E J, AKCABAY D T. Hybrid algorithm for modeling of fluid-structure interaction in incompressible, viscous flows[J]. Acta Mechanica Sinica, 2012,28(4): 1030-1041.
    [8] PARK H. Advanced turboprop composite propeller design and analysis using fluid-structure interaction method[J]. Composites Part B: Engineering, 2016, 97(15): 111-119.
    [9] STORTI M A, NIGRO N M, PAZ R R, et al. Strong coupling strategy for fluid-structure interaction problems in supersonic regime via fixed point iteration[J]. Journal of Sound and Vibration, 2009, 320 (4/5): 859-877.
    [10] 毕绍康. 双辐板涡轮盘流热固耦合计算及优化设计[D]. 哈尔滨:哈尔滨工业大学, 2021.Bi Shaokang. Fluid-thermal-machanical coupling calculation and optimization design of twin-web turbine disk[D]. Harbin: Harbin Institute of Technology, 2021.
    [11] ZHANG X J, CHEN W Y, HU D Y, et al. An efficient approach for parametric modeling and prediction of the hollow blade manufacture shape[J]. Aerospace, 2023, 10: 1-16.
    [12] 高凡. 变循环发动机模式转换动态过程的流固耦合数值预测方法研究[D]. 北京: 北京航空航天大学, 2023.GAO Fan. Study on numerical prediction method of fluid-structure coupling for dynamic process of variable cycle engine mode[D]. Beijing: Beihang University, 2023.
    [13] RAI M M. Navier-Stokes simulations of rotor-stator interactions using patched and overlaid grids[J]. Journal of Propulsion and Power, 1987, 3(5): 387-396.
    [14] GALPIN P F, BROBERG R B, HUTCHINSON B R. Three-dimensional Navier Stokes predictions of steady state rotor/stator interaction with pitch change[C]//Proceedings of the Third Annual Conference of the CFD Society of Canada. Banff: [s.n.], 1995.
    [15] LAITH Z, PAUL G, RUBENS C, et al. Time transformation simulation of a 1.5 stage transonic compressor[J]. Journal of Turbomachinery, 2017, 139(7): 071001.
    [16] HE L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.
    [17] HALL K C, CLARK W S, LORENCE C B. A linearized Euler analysis of unsteady transonic flows in turbomachinery[J]. Journal of Turbomachinery, 1994, 116(3): 477-488.
    [18] HE L, NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal, 1998, 36(11): 2005-2012.
    [19] CONNELL S, HUTCHINSON B, GALPIN P, et al. The efficient computation of transient flow in turbine blade rows using transformation methods[C]// Proceedings of ASME Turbo Expo 2012. Copenhagen: [s.n.], 2012.
    [20] ZHANG X J, WANG Y R, JIANG X H. An efficient approach for predicting resonant response with the utilization of the time transformation method and the harmonic forced response method[J]. Aerospace, 2021, 8: 1-21.
    [21] 王子维, 范召林, 江雄, 等. 用于多级压气机非定常流动的谐波平衡方法研究[J]. 推进技术, 2017, 38(11): 2512-2521.WANG Ziwei, FAN Zhaolin, JIANG Xiong, et al. Investigation on harmonic balance method for simulation of unsteady flow in the multi-stage compressor[J]. Journal of Propulsion Technology, 2017, 38(11): 2512-2521.
    [22] CHEN T,VASANTHAKUMAR P,HE L. Analysis of unsteady blade row interaction using nonlinear harmonic approach[J]. Journal of Propulsion and Power, 2001, 17(3): 651-658.
    [23] MITRA M, EPUREANU B I. Dynamic modeling and projection-based reduction methods for bladed disks with nonlinear frictional and intermittent contact interfaces[J]. Applied Mechanics Reviews, 2019, 71(5): 50803.
    [24] THOMAS D L. Dynamics of rotationally periodic structures[J]. International Journal for Numerical Methods in Engineering, 1979, 14(1): 81-102.
    [25] YANG M T, GRIFFIN J H. A reduced-order model of mistuning using a subset of nominal system modes[J]. Journal of Engineering for Gas turbines and Power, 2001, 123(4): 893-900.
    [26] CIGEROGLU E, AN N, MENQ C H. A microslip friction model with normal load variation induced by normal motion[J]. Nonlinear Dynamics, 2007, 50(3): 609-626.
    [27] CRAIG R, BAMPTON M. Coupling of substructures for dynamic analyses[J]. AIAA Journal, 1968, 6(7):1313-1319.
    [28] BLADH R, CASTANIER M P, PIERRE C. Component-mode-based reduced order modeling techniques for mistuned bladed disks: Part Ⅰ—Theoretical models[C]//Proceedings of ASME Turbo Expo 2000: Power for Land, Sea and Air. [S.l.]: [s.n.], 2000.
    [29] CASTANIER M P, TAN Y C, PIERRE C. Characteristic constraint modes for component mode synthesis[J]. AIAA Journal, 2001, 39(6): 1182-1187.
    [30] BECK J A, BROWN J M, CROSS C J, et al. Geometric mistuning reduced-order models for integrally bladed rotors with mistuned disk-blade boundaries[J]. Journal of Turbomachinery, 2013: V07BT31A005.
    [31] 司武林. 涡轮榫接结构振动特性分析及试验验证[D]. 北京: 北京航空航天大学, 2013.SI Wulin. Study on dynamic characters of turbine bladed disk with joint and experimental verification[D]. Beijing: Beihang University, 2013.
    [32] CAMERON T M, GRIFFIN J H. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems[J]. Journal of Applied Mechanics, 1989, 56(1): 149-154.
    [33] LING H F, WU X X. Fast Galerkin method and its application to determine periodic solutions of non-linear oscillators[J]. International Journal of Non-linear Mechanics, 1987, 22(2): 89-98.
    [34] HARTUNG A, HACKENBERG H P, KRACK M, et al. Rig and engine validation of the nonlinear forced response analysis performed by the tool OrAgl[J]. Journal of Engineering for Gas Turbines and Power, 2018, 141(2): 21019.
    [35] PETROV E P. A method for use of cyclic symmetry properties in analysis of nonlinear multiharmonic vibrations of bladed disks[J]. Journal of Turbomachinery, 2004, 126(1): 175-183.
    [36] 尹泽勇. 航空发动机设计手册(第18册): 叶片轮盘和主轴强度分析[M]. 北京: 航空工业出版社, 2001.YIN Zeyong. Aircraft engine design handbook (volume 18): Strength analysis of blade, disk and shaft[M]. Beijing: Aviation Industry Press, 2001.
    [37] COFFIN L. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers, 1954, 76: 931-950.
    [38] OSTERGREN W. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue[J]. Journal of Testing and Evaluation, 1976, 4(5): 327-339.
    [39] SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5(4): 767-778.
    [40] LIU H, HU D, WANG R, et al. Experimental and numerical investigations on the influence of cold expansion on low cycle fatigue life of bolt holes in aeroengine superalloy disk at elevated temperature[J]. International Journal of Fatigue, 2020, 132: 105390.
    [41] 田腾跃. 喷丸强化镍基高温合金表面完整性量化表征及疲劳寿命预测[D]. 北京: 北京航空航天大学, 2023.TIAN Tengyue. Surface integrity quantitative characterization and fatigue life prediction of nickel-based superalloy after shot peening[D]. Beijing: Beihang University, 2023.
    [42] LI Y, ZHAN M, JIANG X, et al. Low-cycle fatigue behavior and life prediction of TA15 titanium alloy by crystal plasticity-based modelling[J]. Journal of Materials Research and Technology, 2023, 23: 954-966.
    [43] MANONUKUL A, DUNNE F. High and low cycle fatigue crack initiation using polycrystal plasticity[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 2004, 460: 1881-1903.
    [44] CHARKALUK E, BIGNONNET A, CONSTAN T, et al. Fatigue design of structures under thermomechanical loadings[J]. Fatigue & Fracture of Engineering Materials & Structures, 2007, 25(12): 1199-1206.
    [45] LIU W, HUANG J, LIU J, et al. Experimental and crystal plasticity modelling study on the crack initiation in micro-texture regions of Ti-6Al-4V during high cycle fatigue tests[J]. International Journal of Fatigue, 2021, 148: 106203.
    [46] 易敏, 胡文轩. 晶体塑性模型及其在金属疲劳寿命预测中的应用[J]. 南京航空航天大学学报, 2023, 55(1): 12-27.Yi Min, Hu Wenxuan. Crystal plasticity model and its application for fatigue life prediction of metals[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(1): 12-27.
    [47] COFFIN L. Prediction parameters and their application to high temperature low-cycle fatigue[C]//Proceedings of Second International Conference on Fracture. London, UK: [s.n.], 1969: 1-12.
    [48] 胡殿印, 高晔, 马琦航, 等. 晶粒尺寸对GH720Li镍基合金蠕变-疲劳寿命的影响[J].稀有金属材料与工程, 2018, 47(8): 2386-2391.HU Dianyin, GAO Ye, MA Qihang, et al. Effect of grain size on the creep-fatigue life of GH720Li superalloy[J]. Rare Metal Materials and Engineering, 2018, 47(8): 2386-2391.
    [49] MANSON S, HALFORD G, HIRSCHBERG M H. Creep fatigue analysis by strain-range partitioning[C]//Proceedings of the First Symposium on Design for Elevated Temperature Environment. San Francisco:[s.n.], 1971.
    [50] HALFORD G, SALTSMAN J. Strain range partitioning: A total strain range version[C]//Proceedings of International Conference on Advances in Life Prediction Methods. New York: American Society of Mechanical Engineers, 1983.
    [51] 胡绪腾, 宋迎东. 总应变-应变能区分法[J]. 机械工程学报, 2007, 43(2): 219-224.HU Xuteng, SONG Yingdong. Total strain version of strain energy partitioning[J]. Journal of Mechanical Engineering, 2007, 43(2): 219-224.
    [52] MINER M. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): 159-164.
    [53] ROBINSON E. Effect of temperature variation on the long-time rupture strength of steels[J]. Journal of Fluids Engineering, 1952: 777-781.
    [54] TAIRA S. Lifetime of structures subjected to varying load and temperature[C]//Proceedings of Creep in Structures. Berlin: [s.n.], 1962: 96-124.
    [55] Chaboche J. Continuum damage mechanics: Present state and future trends[J]. Nuclear Engineering & Design, 1987, 105(1): 19-33.
    [56] RABOTNOV Y, LECKIE F, PRAGER W. Creep problems in structural members[J]. Journal of Applied Mechanics, 1970, 37(1): 249.
    [57] Kim T, Kang D, Yeom J, et al. Continuum damage mechanics-based creep-fatigue-interacted life prediction of nickel-based superalloy at high temperature[J]. Scripta Materialia, 2007, 57(12): 1149-1152.
    [58] Yeom J, Lee C, Kim J. Continuum damage model of creep-fatigue interaction in Ni-base superalloy[J] Key Engineering Materials, 2007(1): 235-240.
    [59] Sun Li, Liu Liqiang, Wang Runzi. A modified damage-coupled visco-plastic constitutive model for capturing the asymmetric behavior of a nickel-based superalloy under wide creep-fatigue loadings[J]. International Journal of Fatigue, 2022, 164: 107160.
    [60] ZHU S, YUE P, YU Z, et al. A combined high and low cycle fatigue model for life prediction of turbine blades[J]. Materials, 2017,10(7): 698.
    [61] ZHENG X, ENGLER P J, SU X, et al. Modeling of fatigue damage under superimposed high-cycle and low-cycle fatigue loading for a cast aluminum alloy[J]. Materials Science and Engineering A, 2013, 560:792-801.
    [62] MANSON S S, HALFORD G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17(2):169-192.
    [63] HAN L, HUANG D, YAN X, et al. Combined high and low cycle fatigue life prediction model based on damage mechanics and its application in determining the aluminized location of turbine blade[J]. International Journal of Fatigue, 2019, 127: 120-130.
    [64] NADEEM A, MAGD A. Fretting fatigue crack nucleation: A review[J]. Tribology International, 2018, 121: 121-138.
    [65] SZOLWINSKI M, FARRIS T. Mechanics of fretting fatigue crack formation[J]. Wear, 1996, 198(1/2):93-107.
    [66] FINDLEY W. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending[J]. Journal of Engineering for Industry, 1959, 81(4): 301-305.
    [67] FATEMI A, SOCIE D. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11: 149-65.
    [68] KOUANGA C T, JONES J D, REVILL I, et al. On the estimation of finite lifetime under fretting fatigue loading[J]. International Journal of Fatigue, 2018, 112: 138-152.
    [69] RUIZ C, BODDINGTON P, CHEN K C. An investigation of fatigue and fretting in a dovetail joint[J]. Experimental Mechanics, 1984, 24(3): 208-217.
    [70] 蒋康河, 鄢林, 陈竞炜,等. 几何参数对涡轮榫连接微动疲劳寿命的影响:仿真[J]. 航空动力学报,2023,38(7): 1734-1739.JIANG Kanghe,YAN Lin,CHEN Jingwei, et al. Fretting fatigue life of turbine attachment under combined high and low cycle load: numerical simulation[J]. Journal of Aerospace Power,2023,38(7): 1734-1739.
    [71] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988.
    [72] FOUVRY S, LISKIEWICZ T, KAPSA P, et al. An energy description of wear mechanisms and its applications to oscillating sliding contacts[J]. Wear, 2003, 255(1): 287-298.
    [73] BERTHIER Y, VINCENT L, GODET M. Velocity accommodation in fretting[J]. Wear, 1988, 125: 25-38.
    [74] ZHANG L, MA S, LIU D, et al. Fretting wear modelling incorporating cyclic ratcheting deformations and the debris evolution for Ti-6Al-4V[J]. Tribology International, 2019, 136: 317-331.
    [75] Shi L, Wei D, Wang Y, et al. An investigation of fretting fatigue in a circular arc dovetail assembly[J]. International Journal of Fatigue, 2016, 82: 226-237.
    [76] ZHU S, LIU Y, LIU Q, et al. Strain energy gradient-based lcf life prediction of turbine discs using critical distance concept[J]. International Journal of Fatigue, 2018, 113: 33-42.
    [77] 嵇大伟. 涡轮盘榫槽结构蠕变-疲劳寿命预测方法研究与验证[D]. 南京: 南京航空航天大学, 2022.JI Dawei. Research and validation of creep-fatigue life prediction method for turbine disc mortise[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022.
    [78] 倪卓慧. 钛合金材料的微动疲劳寿命研究[D]. 北京: 北京航空航天大学, 2021.NI Zhuohui. The study of fretting fatigue life prediction of titanium alloy[D]. Beijing: Beihang University, 2021.
    [79] WANG R Q, CHO C D, NIE J X. Combined fatigue life test and extrapolation of turbine disc mortise at elevated temperature[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(4): 863-868.
    [80] 陈光. 航空燃气涡轮发动机结构设计[M]. 北京:北京航空航天大学出版社,1994.CHEN Guang. Structural design of aircraft turbine engine[M]. Beijing: Beihang University Press, 1994.
    [81] 宋兆泓. 航空发动机典型故障分析[M]. 北京:北京航空航天大学出版社,1993.SONG Zhaohong. Typical failure analysis of aircraft engine[M]. Beijing: Beihang University Press, 1993.
    [82] PARIS P C, GOMEZ M P, Anderson W E. A rational analytic theory of fatigue[J]. The Trend in Engineering, 1961, 13: 9-14.
    [83] WALKER E K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[C]//Proceedings of Effects of Environment and Complex Load History on Fatigae Life.[S.l.]: American Society for Testing and Materials International, 1970.
    [84] FORMAN R G, KEARNEY V, ENGLE R. Numerical analysis of crack propagation in cyclic-loaded structures[J]. Journal of Fluids Engineering, 1967, 89: 459-463.
    [85] MAJUMDAR S,MORROW J. Correlation between fatigue crack propagation and low cycle fatigue properties[J]. American Society for Testing and Materials International, 1974. DOI.10.1520/STP385995.
    [86] TOMKINS B. Fatigue crack propagation-an analysis[J]. Philosophical Magazine, 1968, 18: 1041-1066.
    [87] MCCLINTOCK F A. On the plasticity of the growth of fatigue cracks[J]. Fracture of Solids, 1963, 20: 65-102.
    [88] SAXENA A, WILLIAMS R S, SHIH T T. A model for representing and predicting the influence of hold time on fatigue crack growth behavior at elevated temperature[J]. American Society for Testing and Materials Special Technical Publication, 1981: 86-99.
    [89] BYRNE J, HALL R, Grabowski J. Elevated temperature fatigue crack growth under dwell conditions in Waspaloy[J]. International Journal of Fatigue, 1997, 19(5): 359-367.
    [90] ZHANG Y, HUANG K, LIU H, et al. A concise and novel binomial model for creep-fatigue crack growth behaviors[J]. International Journal of Fatigue, 2020, 135: 105557.1-105557.12.
    [91] YANG H, BAO R, ZHANG J. An interaction crack growth model for creep-brittle superalloys with high temperature dwell time[J]. Engineering Fracture Mechanics, 2014, 124-125: 112-120.
    [92] 赵振华, 陈伟, 吴铁鹰. 高低周复合载荷对钛合金疲劳裂纹扩展性能的影响[J]. 机械科学与技术, 2012, 31(4): 643-647.ZHAO Zhenhua, CHEN Wei, WU Tieying. The effect of combined cycle fatigue load on the fatigue crack propagation of titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(4): 643-647.
    [93] HU D, MENG F, LIU H, et al. Experimental investigation of fatigue crack growth behavior of GH2036 under combined high and low cycle fatigue[J]. International Journal of Fatigue, 2016, 85: 1-10.
    [94] KUJAWSKI D. On assumptions associated with ΔKeff and their implications on FCG predictions[J]. International Journal of Fatigue, 2005, 27(10/11/12): 1267-1276.
    [95] SEHITOGLU H, SUN W. Modeling of plane strain fatigue crack closure[J]. Journal of Engineering Materials and Technology, 1991, 113: 31-40.
    [96] POWELL B E,HAWKYARD M,GRABOWSKI L. The growth of cracks in Ti-6Al-4V plate under combined high and low cycle fatigue[J]. International Journal of Fatigue, 1997, 19(97): 167-176.
    [97] LIU H, HU D, WANG R, et al. Fatigue crack growth of multiple load path structure under combined fatigue loading: Part Ⅱ—Experiment study[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. [S.l.]: American Society of Mechanical Engineers, 2014.
    [98] LIU Y, LU Z, XU J. A simple analytical crack tip opening displacement approximation under random variable loadings[J]. International Journal of Fracture, 2012, 173(2): 189-201.
    [99] HU D, YANG Q, LIU H, et al. Crack closure effect and crack growth behavior in GH2036 superalloy plates under combined high and low cycle fatigue[J]. International Journal of Fatigue, 2017, 95: 90-103.
    [100] HU D, YAN L, GAO Y, et al. Crack growth behavior of full-scale turbine attachment under combined high and low cycle fatigue[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(9): 091002.
    [101] BUECKNER H F. A novel principle for the computation of stress intensity factors[J]. Journal of Applied Mathematics and Mechanics. 1970, 50(10): 529-546.
    [102] RICE J. Some remarks on elastic crack-tip stress field[J]. International Journal of Solids and Structures, 1972, 8(6): 751-758.
    [103] KICIAK A, GLINKA G, EMAN M. Weight functions and stress intensity factors for corner quarter-elliptical crack in finite thickness plate subjected to in-plane loading[J]. Engineering Fracture Mechanics, 1998, 60(2): 221-238.
    [104] 王宁晨, 胡殿印, 刘茜,等. 基于Wiener过程的涡轮盘榫槽裂纹扩展可靠性分析[J]. 航空动力学报, 2022, 37(11): 2440-2447.WANG Ningchen, HU Dianyin, LIU Xi, et al. Reliability analysis of crack growth in turbine disk mortise based on Wiener process[J]. Journal of Aerospace Power, 2022, 37(11): 2440-2447.
    [105] 王宁晨. 涡轮盘榫槽结构疲劳裂纹扩展寿命预测及可靠性分析[D]. 北京: 北京航空航天大学, 2023.WANG Ningchen. Crack growth life prediction and reliability analysis of turbine disk’s mortise[D]. Beijing: Beihang University, 2023.
    [106] 刘廷毅, 耿瑞, 张峻峰. 发动机轮盘低循环疲劳寿命试验模拟件设计[J]. 航空动力学报, 2008, 23(1):32-36.LIU Tingyi, GENG Rui, ZHANG Junfeng. Design of simulated specimen for low-cycle fatigue of turbine engine disk[J]. Journal of Aerospace Power, 2008, 23(1): 32-36.
    [107] 陆山, 王春光, 陈军. 任意最大应力梯度路径轮盘模拟件设计方法[J]. 航空动力学报, 2010, 25(9):2000-2005.LU Shan, WANG Chunguang, CHEN Jun. Design method of imitation specimen for engine disk with any maximum stress gradient path[J]. Journal of Aerospace Power, 2010, 25(9): 2000-2005.
    [108] 杨兴宇, 董立伟, 耿中行, 等. 某压气机轮盘榫槽低循环疲劳模拟件设计与试验[J]. 航空动力学报, 2008, 23(10): 1829-1834.YANG Xingyu, DONG Liwei, GENG Zhongxing, et al. Design and experimentation of simulation specimen for aeroengine compressor disk slot used in low cycle fatigue test[J]. Journal of Aerospace Power, 2008, 23(10): 1829-1834.
    [109] 鄢林, 胡殿印, 田腾跃, 等. 榫连接结构微动疲劳模拟件设计及试验[EB/OL].(2022-10-18). http:Rns.cnki.net/Kcms/detail/11.2297.V.20221018.1741.005.html.YAN Lin,HU Dianyin,TIAN Tengyue, et al. Design and experiment of simulated specimen for fretting fatigue of turbine attachment[EB/OL].(2022-10-18). http: Rns.cnki.net/Kcms/detail/11.2297.V.20221018.1741.005.html.
    [110] 赵淼东, 胡殿印, 毛建兴, 等. 轮盘低周疲劳模拟件设计及试验研究[J]. 航空学报,2023.DOI:10.7527/S100-6893.2023.28320.ZHAO Miaodong, HU Dianyin, MAO Jianxing, et al. Simulating specimen for low cycle fatigue of aero-engine’s disc: Design and experiment[J]. Acta Aeronautica et Astronautica Sinica,2023.DOI:10.7527/S100-6893.2023.28320.
    [111] QU Z, LIU K, WANG B, et al. Fretting fatigue experiment and finite element analysis for dovetail specimen at high temperature[J]. Applied Sciences, 2021, 11(21): 9913.
    [112] POWELL B, DUGGAN T. Crack growth in Ti-6Al-4V under the conjoint action of high and low cycle fatigue[J]. International Journal of Fatigue, 1987, 9(4): 195-202.
    [113] CROSS C. Multiaxial testing of gas turbine engine blades[C]//Proceedings of the 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit.[S.l.]: AIAA, 2000: 102514.
    [114] WESER S, GAMPE U, RADDATZ M, et al. Advanced experimental and analytical investigations on combined cycle fatigue (CCF) of conventional cast and single-crystal gas turbine blades[J]. Structures & Dynamics, 2011, 54662: 19-28.
    [115] YE L, SHEN Z, TONG L, et al. Optical properties of sapphire fiber under high temperature[C]//Proceedings of SPIE.[S.l.]: SPIE, 2002: 161-166.
    [116] 胡殿印, 赵炎, 毛建兴,等. 一种适用于高温环境的结构损伤监测系统和方法:中国,CN115326717A[P]. 2022-11-11.HU Dianyin, ZHAO Yan, MAO Jianxing, et al. A structural damage monitoring system and method for high temperature environment:China,CN115326717A[P]. 2022-11-11.
    [117] ZHAO Y, HU D, ZHANG M, et al. In situ measurements for plastic zone ahead of crack tip and continuous strain variation under cyclic loading using digital image correlation method[J]. Metals, 2020, 10(2):103390.
    [118] ZHAO Y, HU D, LIU Q, et al. High resolution and real-time measurement of 2D fatigue crack propagation using an advanced digital image correlation[J]. Engineering Fracture Mechanics, 2022, 268: 108457.
    [119] 胡殿印, 赵炎, 毛建兴,等. 一种基于结构表面位移场的疲劳裂纹扩展实时监测方法: 中国,CN113865487B[P]. 2022-11-25.HU Dianyin, ZHAO Yan, MAO Jianxing, et al. A real-time monitoring method of fatigue crack propagation based on structural surface displacement field:China,CN113865487B[P]. 2022-11-25.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡殿印,鄢林,李鑫,张晓杰,毛建兴,古远兴,王荣桥.涡轮榫接疲劳寿命评估及验证:研究现状及展望[J].南京航空航天大学学报,2023,55(4):573-588

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-16
  • 最后修改日期:2023-06-25
  • 在线发布日期: 2023-08-05
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!