描述碳纳米管内水分子单链的深度学习势
作者:
作者单位:

南京航空航天大学机械结构力学及控制国家重点实验室,南京 210016

作者简介:

通讯作者:

仇虎,男,教授,博士生导师,E-mail:qiuhu@nuaa.edu.cn。

中图分类号:

O369

基金项目:

国家自然科学基金(12172170)。


Deep-Learning Potential for Single-File Water Chain in Carbon Nanotubes
Author:
Affiliation:

State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    碳纳米管通道内的受限水具有与体相水截然不同的物理力学性质。当纳米管直径低至约0.8 nm时,通道内水分子形成与生物水通道内类似的单链结构,并显现出极高的流速和离子排斥能力。尽管基于经验势的分子动力学模拟在揭示单链水的奇特行为方面发挥了重要作用,但其模拟结果通常依赖于水模型和壁面-水作用参数选取。本文以从头算分子动力学计算结果为数据集,通过深度神经网络训练获得描述碳纳米管内单链水的深度学习势。基于深度学习势的分子动力学模拟在势能和原子受力方面具有近似第一性原理水平的准确性但低得多的计算成本,能准确重现从头算分子动力学得到的单链水性质,包括O-H键长、H-O-H键角、取向角和密度分布等。此外,本文对比了该深度学习势与常用经典水模型所得结果的异同。本文所构建的深度学习势为以接近第一性原理的准确性进行碳纳米管内单链水体系的大尺寸、长时间模拟提供了可能。

    Abstract:

    Water confined in carbon nanotube channels exhibits structures and dynamics different from bulk water. When the diameter of carbon nanotubes is reduced to about 0.8 nm, water molecules arranges themselves into a single-file chain similar to that in biological water channels, which shows extremely high flow rates and ion repulsion capabilities. Empirical potential-based molecular dynamics simulations have been widely used to reveal the structures and dynamic properties of the single-file water. However, the selected water models and interaction parameters between water and wall atoms significantly affect the simulation results. In this work, a deep-learning potential is developed for the single-file water chain by training deep neural networks based on datasets obtained from ab initio molecular dynamics. Molecular dynamics simulations using the deep learning potential can reproduce the potential energy and atomic force with the accuracy near the first-principle calculations but at much lower computational costs. They can also reproduce the properties of the single-file water obtained in ab initio molecular dynamics, including the distributions of O-H bond length, H-O-H bond angle, orientation angle and density. In addition, we compare the results from deep learning potentials based simulations with those based on traditional water models. The developed deep learning potential enables simulations of single-file water systems with large system sizes and time scales, at the accuracy near the first-principle calculations.

    参考文献
    相似文献
    引证文献
引用本文

胡元虎,赵文,仇虎.描述碳纳米管内水分子单链的深度学习势[J].南京航空航天大学学报,2023,55(3):507-514

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-07
  • 最后修改日期:2023-02-28
  • 录用日期:
  • 在线发布日期: 2023-06-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司