基于信息素差异分布策略的路径规划蚁群改进算法
作者:
作者单位:

安徽工程大学机械工程学院, 芜湖 241000

作者简介:

通讯作者:

王雷,男,博士,教授,E-mail:wangdalei2000@126.com。

中图分类号:

TP242.6

基金项目:

安徽省高校优秀拔尖人才培育项目(gxbjZD2022023);安徽省高校自然科学研究重点项目(2022AH050978, KJ2019A0147);芜湖市科技计划项目(2022jc26);安徽工程大学检测技术与节能装置安徽省重点实验室开放研究基金(JCKJ2021A06);安徽工程大学-鸠江区产业协同创新专项基金(2022cyxtb6,2022cyxtb4);安徽工程大学科研基金(2022YQQ002,Xjky2020001)。


An Improved Ant Colony Algorithm for Path Planning Based on Pheromone Differential Distribution Strategy
Author:
Affiliation:

School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统蚁群算法用于移动机器人路径规划时存在初期盲目性搜索、收敛速度慢以及容易陷入局部最优的问题,提出一种蚁群改进算法。首先根据各节点相对于起始点和目标点连线之间的距离,对初始信息素不平均分配,使其呈正态分布,降低算法搜索初期的盲目性,加快最优解的搜索;其次改进挥发因子,采用双挥发因子原则,控制信息素的挥发,既降低局部最优的可能,又能加快收敛速度;对冗余路径作进一步优化处理,使得路径更优。仿真结果表明,本文蚁群改进算法相对比传统蚁群算法以及其他蚁群改进算法收敛速度更快,收敛性更稳定。

    Abstract:

    Aiming at the problems of blind search in the initial stage, slow convergence speed and easy to fall into local optimum when traditional ant colony optimization is used for path planning of mobile robot, an improved ant colony optimization is proposed. Firstly, according to the distance between each node relative to the connecting line between the starting point and the target point, the initial pheromone is unevenly distributed to make it normal distribution, so as to reduce the blindness in the initial search of the algorithm and speed up the search of the optimal solution. Reduce the blindness of the initial search algorithm, speed up the search of the optimal solution; Secondly, the volatilization factor is improved and the principle of double volatilization factor is adopted to control the volatilization of pheromone, which can not only reduce the possibility of local optimization, but also accelerate the convergence speed. Finally, the redundant path is further optimized to make the path better. The simulation results show that the improved ant colony optimization has faster convergence speed and more stable convergence than the traditional ant colony optimization and other improved ant colony optimizations.

    参考文献
    相似文献
    引证文献
引用本文

马康康,王雷,李东东,蔡劲草,苏学满.基于信息素差异分布策略的路径规划蚁群改进算法[J].南京航空航天大学学报,2023,55(1):100-107

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-28
  • 最后修改日期:2022-03-06
  • 录用日期:
  • 在线发布日期: 2023-02-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司