原位聚合热塑性复合材料及其成型工艺研究
CSTR:
作者:
作者单位:

南京航空航天大学材料科学与技术学院,南京211106

作者简介:

李勇,男,教授,博士生导师,江苏省复合材料工程研究中心主任、中国复合材料学会职称委员会副主任,江苏航空航天学会复合材料专业委员会主任。在国内外学术期刊上发表论文150余篇,获得授权发明专利40项、软件著作权登记9项。先后获得国防科技一等奖1项、教育部科技二等奖1项和国防科技三等奖1项,获得省级教学成果一等奖1项。E-mail: lyong@nuaa.edu.cn。

通讯作者:

朱康,男,博士研究生,E-mail: zhukang@nuaa.edu.cn。

基金项目:

江苏省风力机设计高技术研究重点实验室基金。


Review of In-situ Polymerization of Thermoplastic Composites and Its Forming Process
Author:
Affiliation:

College of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    热塑性树脂分子量大,熔体黏度高,采用热熔方法制备复合材料存在树脂流动性差、微观尺度上易形成复合缺陷的问题。采用原位聚合方法制备热塑性复合材料,不仅可以避免上述问题,还能够沿用热固性复合材料的成型方法,进而实现热塑性复合材料的高效率、低成本制造,因此原位聚合热塑性复合材料在复合材料应用领域具有广阔的应用前景。围绕几种原位聚合热塑性树脂,本文阐述了其复合材料性能及成型工艺的研究现状,并针对目前存在的问题,提出了4个研究方向:改性工艺与成型工艺的耦合、聚合环境洁净度和聚合反应对杂质的敏感性的控制、聚合反应放热温度的控制、液体成型树脂适用期的调控。

    Abstract:

    The thermoplastic resin has a huge molecular weight and high viscosity of its melt, so there are some problems in the preparation of composite materials by hot melting method, such as poor fluidity of resin and easy formation of composite defects on the microscopic scale. Using in-situ polymerization to prepare thermoplastic composites can not only avoid the above problems, but also use the forming method of thermosetting composites, so as to achieve high efficiency and low-cost manufacturing of thermoplastic composites. Therefore, in-situ polymerization thermoplastic composites have broad application prospects in the field of composite materials. Based on several in-situ polymerized thermoplastic resins, this paper describes the research status of composite material properties and forming processes, and puts forward four research directions in view of the existing problems: Coupling of modification process and forming process, control of environmental cleanliness of polymerization and sensitivity of polymerization to impurities, control of heat release temperature of polymerization reaction, regulation of pot life of resin.

    参考文献
    [1] KURITA H, BERNARD C, LAVROVSKY A, et al. Tensile properties of mechanically-defibrated cellulose nanofiber-reinforced polylactic acid matrix composites fabricated by fused deposition modeling[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(1): 68-74.
    [2] 龚明, 张代军, 刘燕峰, 等. 纤维增强热塑性复合材料原位聚合成型技术研究进展[J]. 材料导报, 2020, 34(21): 21180-21187.GONG Ming, ZHANG Daijun, LIU Yanfeng, et al. Research progress in in-situ polymerization of fiber reinforced thermoplastic composites[J]. Materials Review, 2020, 34(21): 21180-21187.
    [3] 杨凡, 高远博, FREDRICK N M, 等. 原位聚合制备碳纤维增强MC尼龙6复合材料及其性能表征[J]. 材料开发与应用, 2018, 33(5): 90-95.YANG Fan, GAO Yuanbo, FREDRICK N M, et al. Preparation and characterization of carbon fiber reinforced MC nylon 6 composites by in-situ polymerization[J]. Materials Development and Application, 2018, 33(5): 90-95.
    [4] 李源, 张琦, 夏礼栋, 等. 碳纤维增强热塑性复合材料成型工艺研究进展[J]. 现代塑料加工应用, 2022, 34(5): 52-55.LI Yuan, ZHANG Qi, XIA Lidong, et al. Research progress of forming process of carbon fiber reinforced thermoplastic composites[J]. Modern Plastic Processing and Application, 2022, 34(5): 52-55.
    [5] ROSSBACH V, WINDELN J, SCHMITZ F P. Sequential analysis of polyesters by stepwise chemical degradation: Preparation of degradation products[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23(6): 1819-1832.
    [6] 张乃斌. 浅议环状聚酯CBT树脂[J]. 塑料制造, 2006, 31(8): 55-59.ZHANG Naibin. Discussion on ring polyester CBT resin[J]. Plastic Manufacturing, 2006, 31(8): 55-59.
    [7] PARTON H, VERPOEST I. In situ polymerization of thermoplastic composites based on cyclic oligomers[J]. Polymer Composites, 2005, 26(1): 60-65.
    [8] NOH Y J, LEE S, KIM S Y, et al. High-speed fabrication of thermoplastic carbon fiber fabric composites with a polymerizable, low-viscosity cyclic butylene terephthalate matrix for automotive applications[J]. Macromolecular Research, 2014, 22(5): 528-533.
    [9] 杨斌, 章继峰, 周利民. 玻璃纤维-碳纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能[J]. 复合材料学报, 2015, 32(2): 435-443.YANG Bin, ZHANG Jifeng, ZHOU Limin. Fabrication and low speed impact performance of glass fiber-carbon fiber hybrid reinforced PCBT composite plates[J]. Journal of Composite Materials, 2015, 32(2): 435-443.
    [10] ARCHER E, MULLIGAN R, DIXON D, et al. An investigation into thermoplastic matrix 3D woven carbon fibre composites[J]. Journal of Reinforced Plastics and Composites, 2012, 31(13): 863-873.
    [11] TRIPATHY A R, BURGAZ E, KUKUREKA S N, et al. Poly (butylene terephthalate) nanocomposites prepared by in-situ polymerization[J]. Macromolecules, 2003, 36(23): 8593-8595.
    [12] BERTI C, BINASSI E, COLONNA M, et al. Improved dispersion of clay platelets in poly (butylene terephthalate) nanocomposite by ring‐opening polymerization of cyclic oligomers: Effect of the processing conditions and comparison with nanocomposites obtained by melt intercalation[J]. Journal of Applied Polymer Science, 2009, 114(5): 3211-3217.
    [13] PAQUETTE M, DION R, BEEBE M, et al. Polymerizable macrocyclic oligomer masterbatches containing dispersed fillers: U.S. Patent Application 11/154,882[P]. 2006-01-05.
    [14] NOH Y J, PAK S Y, HWANG S H, et al. Enhanced dispersion for electrical percolation behavior of multi-walled carbon nanotubes in polymer nanocomposites using simple powder mixing and in situ polymerization with surface treatment of the fillers[J]. Composites Science and Technology, 2013, 89: 29-37.
    [15] JIANG Z, SIENGCHIN S, ZHOU L M, et al. Poly (butylene terephthalate)/silica nanocomposites prepared from cyclic butylene terephthalate[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(3): 273-278.
    [16] CHEN H, HUANG C, YU W, et al. Effect of thermally reduced graphite oxide (TrGO) on the polymerization kinetics of poly (butylene terephthalate)(pCBT)/TrGO nanocomposites prepared by in situ ring-opening polymerization of cyclic butylene terephthalate[J]. Polymer, 2013, 54(6): 1603-1611.
    [17] 林轩, 张平民, 曾余平, 等. MC尼龙/CaCO3纳米复合材料的制备及力学性能研究[J]. 工程塑料应用, 2005, 33(7): 7-9.LIN Xuan, ZHANG Mingmin, ZENG Yuping, et al. Preparation and mechanical properties of MC nylon /CaCO3 nanocomposites[J]. Engineering Plastics Application, 2005, 33(7): 7-9.
    [18] KOJIMA Y, USUKI A, KAWASUMI M, et al. Mechanical properties of nylon 6-clay hybrid[J]. Journal of Materials Research, 1993, 8(5): 1185-1189.
    [19] 周莉, 田彦文, 臧树良, 等. 纳米ZnO对MC尼龙结构和性能的影响[J]. 复合材料学报, 2007, 24(2): 68-72.ZHOU Li, TIAN Yanwen, ZANG Shuliang, et al. Effect of nano-ZnO on structure and properties of MC nylon[J]. Journal of Composites, 2007, 24(2): 68-72.
    [20] GONZáLEZ‐DE LOS SANTOS E A, LóPEZ‐RODRíGUEZ A S, LOZANO‐GONZáLEZ M J, et al. Starlike nylon 6/polyurethane block copolymers by reaction injection‐molding process (RIM)[J]. Journal of Applied Polymer Science, 2001, 80(13): 2483-2494.
    [21] STEHLí?EK J, BALDRIAN J, PUFFR R, et al. Nylon 6 with a short rigid central block[J]. European Polymer Journal, 1997, 33(5): 587-593.
    [22] VAN RIJSWIJK K, JONCAS S, BERGSMA O K, et al. Vacuum-infused thermoplastic composites for MW-size wind turbine blades-preliminary design and manufacturing issues[J]. Journal of Solar Energy Engineering, 2006, 127(4): 570-580.
    [23] KENTARO T, SUENAGA H, ITO H. Effect of thermal annealing on crystallinity and mechanical strength of textile glass and carbon fiber reinforced in situ polymerized ?-caprolactam parts[J]. Microsystem Technologies, 2018, 24(1): 663-668.
    [24] SELVUM P, VAIDYA U K, JANOWSKI G M. Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates[J]. Composites Science and Technology, 2009, 69(6): 839-846.
    [25] 袁惟昀. 甲基丙烯酸甲酯高温本体聚合过程中氧气的影响及体系黏度研究[D]. 上海:华东理工大学, 2014.YUAN Weiyun. Study on the influence of oxygen and the viscosity of methyl methacrylate during high temperature bulk polymerization[D]. Shanghai: East China University of Science and Technology, 2014.
    [26] SHANMUGANANDA MURTHY K, KISHORE K, KRISHNA MOHAN V. Synthesis and characterization of tetrapolymers of styrene, methyl methacrylate, α-methylstyrene, and oxygen[J]. Macromolecules, 1996, 29(14): 4853-4858.
    [27] 赵爽. 过氧化聚合物的合成及引发聚合研究[D]. 长春:长春工业大学, 2017.ZHAO Shuang. Study on synthesis and induced polymerization of peroxidation polymer[D]. Changchun: Changchun University of Technology, 2017.
    [28] TURRO N J, CHOW M F, CHUNG C J, et al. An efficient, high conversion photoinduced emulsion polymerization. Magnetic field effects on polymerization efficiency and polymer molecular weight[J]. Journal of the American Chemical Society, 1980, 102(24): 7391-7393.
    [29] 郑楚昱, 沈榆峰, 何勇. 甲基丙烯酸甲酯的光引发聚合研究[J]. 合成技术及应用, 2017, 32(2): 6-12.ZHENG Chuyu, SHEN Yufeng, HE Yong. Study on photoinduced polymerization of methyl methacrylate[J]. Synthesis Technique and Application, 2017, 32(2): 6-12.
    [30] 王艳, 解一军. 紫外光引发丙烯酸酯类单体的聚合反应[J]. 高分子材料科学与工程, 2014, 30(5): 29-33.WANG Yan, XIE Yijun. Polymerization of acrylate monomers induced by ultraviolet light[J]. Polymeric Materials Science and Engineering, 2014, 30(5): 29-33.
    [31] 刘钰铭. 甲基丙烯酸甲酯辐射引发聚合[J]. 化学通报, 1974, 40(3): 37-39, 64.LIU Yuming. Radiation induced polymerization of methyl methacrylate[J]. Chemical Bulletin of China,1974, 40 (3): 37-39, 64.
    [32] 周瑛. (甲基)丙烯酸甲酯在γ辐射下的RAFT聚合[D]. 苏州:苏州大学, 2006.ZHOU Ying. RAFT polymerization of methyl acrylate under γ radiation[D]. Suzhou: Soochow University, 2006.
    [33] 叶展杰. 常压下低温等离子体引发甲基丙烯酸甲酯连续聚合[D]. 天津:天津大学, 2009.YE Zhanjie. Continuous polymerization of methyl methacrylate induced by low temperature plasma at atmospheric pressure[D]. Tianjin: Tianjin University, 2009.
    [34] 陈春玉, 王少楠, 胡迎. 聚甲基丙烯酸甲酯的合成及应用进展[J]. 广州化工, 2021, 49(9): 1-2.CHEN Chunyu, WANG Shaonan, HU Ying. Synthesis and application of polymethyl methacrylate[J]. Guangzhou Chemical Industry, 2021, 49(9): 1-2.
    [35] OKHAY N, JEGAT C, MIGNARD N, et al. PMMA thermoreversible networks by Diels-Alder reaction[J]. Reactive and Functional Polymers, 2013, 73(5): 745-755.
    [36] 王雅琪. 过氧化甲乙酮——新型铜促进剂的引发固化特性研究[D]. 天津:天津大学, 2018.WANG Yaqi. Study on initiating curing properties of methyl ethyl ketone peroxide─A novel copper accelerator[D]. Tianjin: Tianjin University, 2018.
    [37] ISTVáN L, BERECZKI H F, MANó S, et al. Synthesis and study of new functionalized silica aerogel poly (methyl methacrylate) composites for biomedical use[J]. Polymer Composites, 2015, 36(2): 348-358.
    [38] PUNYANI S, DEB S, SINGH H. Contact killing antimicrobial acrylic bone cements: Preparation and characterization[J]. Journal of Biomaterials Science, Polymer Edition, 2007, 18(2): 131-145.
    [39] LIM K Y, YOON K J, KIM B C. Highly absorbable lyocell fiber spun from celluloses/hydrolyzed starch-g-PAN solution in NMMO monohydrate[J]. European Polymer Journal, 2003, 39(11): 2115-2120.
    [40] 孙保帅, 朱春山, 杨耘. MMA-BA-MAA树脂自由基共聚合成的研究[J]. 广东化工, 2009, 36(8): 10-11, 62-63.SUN Baoshuai, ZHU Chunshan, YANG Yun. Study on free radical copolymerization of MMA-BA-MAA resin[J]. Guangdong Chemical Industry, 2009, 36(8): 10-11, 62-63.
    [41] 罗通, 王志东, 徐若愚, 等. MMA-BA自由基共聚物的结构及性能[J]. 中国塑料, 2011, 25(12): 26-30.LUO Tong, WANG Zhidong, XU Ruoyu, et al. Structure and properties of MMA-BA copolymer[J]. China Plastics, 2011, 25(12): 26-30.
    [42] 丁进. ABS/PMMA共混体系增韧改性研究[D]. 济南:山东大学, 2016.DING Jin. Study on toughening modification of ABS/PMMA blends[D]. Jinan: Shandong University, 2016.
    [43] 董鑫, 王硕, 孟宪东, 等. 聚甲基丙烯酸甲酯抗冲改性剂的制备及增韧效果[J]. 弹性体, 2020, 30(4): 42-46.DONG Xin, WANG Shuo, MENG Xiandong, et al. Preparation and toughening effect of polymethyl methacrylate impact modifier[J]. Chinese Journal of Elastomers, 2020, 30(4): 42-46.
    [44] ZHOU C, WU S, LIU H, et al. Effects of core‐shell particle growth manners on morphologies and properties of poly (vinyl chloride)/(methyl methacrylate- butadiene-styrene) blends[J]. Journal of Vinyl and Additive Technology, 2016, 22(1): 37-42.
    [45] 张平, 牟书香, 朱金春, 等. 聚丙烯酸酯热塑性树脂及其真空辅助灌注成型复合材料性能研究[J]. 玻璃钢/复合材料, 2019, 46(12): 94-100.ZHANG Ping, MOU Shuxiang, ZHU Jinchun, et al. Study on properties of polyacrylate thermoplastic resin and its vacuum assisted perfusion forming composites[J]. Glass Reinforced Plastic/Composite Materials, 2019, 46(12): 94-100.
    [46] 孙显俊, 苏旭明, 毛江辉, 等. 复杂几何体注塑制品翘曲变形模拟仿真[J]. 南京航空航天大学学报, 2015, 47(5): 752-759.SUN Xianjun, SU Xuming, MAO Jianghui, et al. Simulation of warping deformation of injection product with complex geometry[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5): 752-759.
    [47] 邹俊杰, 王钧, 陈晞. 原位聚合制备热塑性环氧树脂及其复合材料性能的研究[J]. 玻璃钢/复合材料, 2019, 46(4): 25-30.ZOU Junjie, WANG Jun, CHEN Xi. Study on properties of thermoplastic epoxy resin prepared by in-situ polymerization[J]. Glass Fiber Reinforced Plastic/Composite Materials, 2019, 46(4): 25-30.
    [48] 李波, 刘伟, 杨建, 等. 车用连续纤维增强热塑性环氧树脂复合材料制备及性能[J]. 工程塑料应用, 2020, 48(8): 46-50.LI Bo, LIU Wei, YANG Jian, et al. Preparation and properties of continuous fiber reinforced thermoplastic epoxy resin composites for vehicle[J]. Engineering Plastics Application, 2020, 48(8): 46-50.
    [49] 颜春, 范欣愉, 于丽萍, 等.原位阴离子开环聚合法制备连续玻璃纤维增强阴离子聚酰胺-6复合材料及其性能[J]. 复合材料学报, 2014, 31(5): 1134-1141.YAN Chun, FAN Xinyu, YU Liping, et al. Preparation and properties of continuous glass fiber reinforced anionic polyamide-6 composites by in situ anionic ring-opening polymerization[J]. Journal of Composite Materials, 2014, 31(5): 1134-1141.
    [50] REPSCH M, HUBER U, MAIER M, et al. Process simulation of LPM (Liquid polymer moulding) in special consideration of fluid velocity and viscosity characteristics[C]//Proceedings of the 7th International Conference on Flow Processes in Composite Materials (FPCM-7). Newark, DE, USA: [s.n.], 2004: 305-309.
    [51] WEYRAUCH F, STADTFELD H C, MITSCHANG P. Simulation and control of the LCM-process with future resin systems[C]//Proceedings of the 7th International Conference on Flow Processes in Composite Materials (FPCM-7). Newark, DE, USA: [s.n.], 2004: 95-100.
    [52] 黎敏荣, 薛平, 贾明印, 等. 连续玻纤增强原位聚合尼龙6复合板材树脂传递成型工艺及性能研究[J]. 塑料工业, 2017, 45(7): 57-60.LI Minrong, XUE Ping, JIA Mingyin, et al. Study on resin transfer forming process and properties of continuous glass fiber reinforced in-situ polymerization of nylon 6 composite sheet[J]. Plastics Industry, 2017, 45(7): 57-60.
    [53] ISHAK Z A M, LEONG Y W, STEEG M, et al. Mechanical properties of woven glass fabric reinforced in situ polymerized poly (butylene terephthalate) composites[J]. Composites Science and Technology, 2007, 67(3/4): 390-398.
    [54] THIELEKE P, BONTEN C. Influence of the fiber preheating in in-situ pultrusion of continuous fiber-reinforced thermoplastic profiles[C]//Proceedings of PPS2019 Europe-Africa Regional Conference of the Polymer Processing Society. Pretoria, South Africa: [s.n.], 2020, 2289(1): 020054-1-020054-5.
    [55] 周佳慧. 碳纤维增强尼龙6反应注射拉挤成型实验平台研制[EB/OL].(2023-02-22). https://kns.cnki.net/KXReader/Detail?invoice=K3qA5hitctIRoz5Sq- MrcrqVGLBnx7itkkiXIkLiqTBhyTNxwnLEdEiwQppUV715OHDIpCAITDhOGHq5PmEe6uTBugV1- SU7 HNQNOTK4yR4jN%2BKUbfo66A7Wl6XPZlC6In0oxns4z98UU3Ug0LJGv7gwIF2mTOSOPJ-6M5IFt3DBKg%3D&DBCODE=CAPJ&FileName=BLGF20230117001&TABLEName=capjlast&nonce=8EEA8404FF114DE7A1056C00E5D8C46- 8&uid=&TIMESTAMP=1677050404642.ZHOU Jiahui. Development of experimental platform for reaction injection pultrusion molding of carbon fiber reinforced nylon 6[EB/OL]. ( 2023-02-22). https://kns.cnki.net/KXReader/Detail?invoice=K3qA5hitctIRoz5SqMrcrqVGLBnx7itkkiXIkLiqTBhyTNxwnLEdEiwQppUV715OHDIpCAITDhOGHq5PmEe6- uTBugV1SU7HNQNOTK4yR4jN%2BKUbfo66A7- Wl6XPZlC6In0oxns4z98UU3Ug0LJGv7gwIF2mTO- SOPJ6M5IFt3DBKg%3D&DBCODE=CAPJ&FileName=BLGF20230117001&TABLEName=capjlast& nonce=8EEA8404FF114DE7A1056C00E5D8C468&uid=&TIMESTAMP=1677050404642.
    [56] ZOLLER A, ESCALé P, GéRARD P. Pultrusion of bendable continuous fibers reinforced composites with reactive acrylic thermoplastic ELIUM? resin[J]. Frontiers in Materials, 2019, 6: 290.
    [57] LUISIER A, BOURBAN P E, M?NSON J A E. Reaction injection pultrusion of PA12 composites: Process and modelling[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(7): 583-595.
    [58] MICHAELI W, GREFENSTEIN A. Engineering analysis and design of twin‐screw extruders for reactive extrusion[J]. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 1995, 14(4): 263-276.
    [59] WU L, JIA Y, SUN S, et al. Numerical simulation of reactive extrusion processes for activated anionic polymerization[J]. Journal of Materials Processing Technology, 2008, 199(1/2/3): 56-63.
    [60] MICHAELI W, FRINGS W, H?CKER H, et al. Reactive extrusion of styrene polymers[J]. International Polymer Processing, 1993, 8(4): 308-318.
    [61] HYUN M E, KIM S C. A study on the reactive extrusion process of polyurethane[J]. Polymer Engineering & Science, 1988, 28(11): 743-757.
    [62] 刘伟兴, 李猛猛, 占鹏飞, 等. 通过自动加速效应的调控反应挤出制备聚甲基丙烯酸甲酯[J]. 功能高分子学报, 2016, 29(2): 207-212.LIU Weixing, LI Mengmeng, ZHAN Pengfei, et al. Preparation of polymethyl methacrylate by automatic acceleration reaction extrusion[J]. Journal of Functional Polymers, 2016, 29(2): 207-212.
    [63] 赵明, 潘湘庆, 王依民. 反应挤出聚酰胺6/蒙脱土纳米复合材料的双螺杆螺杆元件组合设计[J]. 中国塑料, 2004, 18(6): 109-112.ZHAO Ming, PAN Xiangqing, WANG Yimin. Twin-screw element combination design of reactive extrusion polyamide 6/montmorillonite nanocomposites[J]. China Plastics, 2004, 18(6): 109-112.
    [64] ROTHE B, ELAS A, MICHAELI W. In situ polymerisation of polyamide‐6 nanocompounds from caprolactam and layered silicates[J]. Macromolecular Materials and Engineering, 2009, 294(1): 54-58.
    [65] 杨小燕, 周云港, 叶红梅, 等. 反应挤出玻璃纤维增强尼龙6工艺初探[J]. 现代塑料加工应用, 2008, 20(6): 36-39.YANG Xiaoyan, ZHOU Yungang, YE Hongmei, et al. Preliminary study on reactive extrusion glass fiber reinforced nylon 6[J]. Modern Plastics Processing and Application, 2008, 20(6): 36-39.
    [66] 盛伟伟, 苏银河, 于俊荣, 等. 原位反应挤出制备pCBT/MWNTs复合材料及性能研究[J]. 塑料科技, 2019, 47(10): 23-26.SHENG Weiwei, SU Yinhe, YU Junrong, et al. Preparation and properties of pCBT/MWNTs composites by in situ eeactive extrusion[J]. Plastic Science and Technology, 2019, 47(10): 23-26.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李勇,朱康,刘洪全,王雪敏,胡泽辉,还大军.原位聚合热塑性复合材料及其成型工艺研究[J].南京航空航天大学学报,2023,55(1):1-11

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-20
  • 最后修改日期:2023-02-15
  • 在线发布日期: 2023-02-05
文章二维码
您是第6920025位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!