烧蚀防热材料热物性参数辨识方法
CSTR:
作者:
作者单位:

1.北京空间飞行器总体设计部,北京100094;2.哈尔滨工业大学复合材料与结构研究所,哈尔滨150001

通讯作者:

潘威振,男,工程师,E-mail:hitpwz@126.com。

中图分类号:

V45


An Identification Method for Thermal Properties of Ablative Thermal Protection Materials
Author:
Affiliation:

1.Beijing Institute of Spacecraft System Engineering, Beijing 100094, China;2.Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    烧蚀材料热物性参数对防热性能至关重要,本文设计了原始材料和碳化材料的测温实验模型,在非氧化条件下进行风洞实验,通过恒定热流边界的加热实验,获取材料内部温度测点的温度响应。通过传热反问题方法,利用原始材料和碳层材料的温度历程,辨识了材料随温度变化的热物性参数。

    Abstract:

    The thermal property of thermal protection materials is important for their performance. A thermal experiment model of raw and carbonized materials is designed. Under non-oxidizing conditions, the wind tunnel experiments are carried out, and the temperature response of the temperature measurement points inside materials is obtained through the heating experiment of the constant heat flux boundary. By the method of inverse heat transfer problem, and the temperature response of raw and carbonized materials, the thermal properties varying with temperature of materials are identified.

    参考文献
    [1] WILLCOCKSON W H. Mars pathfinder heatshield design and flight experience introduction[J]. Journal of Spacecraft and Rockets, 1999, 36(3): 374-379.
    [2] EDQUIST K T, HOLLIS B R, JOHNSTON C O, et al. Mars science laboratory heat shield aerothermo-dynamics: Design and reconstruction[J]. Journal of Spacecraft and Rockets, 2014, 51(4): 1106-1124.
    [3] LAUB B, VENKATAPATHY E. Thermal protection system technology and facility needs for demanding future planetary missions[C]//Proceedings of Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. Lisbon, Portugal: [s.n.], 2004(544): 239-247.
    [4] 吴晓宏, 陆小龙, 李涛, 等. 轻质烧蚀材料研究综述[J]. 航天器环境工程, 2011, 28(4): 313-317.
    [5] 程海明, 洪长青, 张幸红. 低密度烧蚀材料研究进展[J]. 哈尔滨工业大学学报, 2018, 50(5): 1-11.
    [6] HELBER B, TURCHI A, SCOGGINS J B, et al. Experimental investigation of ablation and pyrolysis processes of carbon-phenolic ablators in atmospheric entry plasmas[J]. International Journal of Heat and Mass Transfer, Elsevier Ltd, 2016, 100: 810-824.
    [7] DAVID S. Thermal conductivity of insulations using guarded hot plates, including recent developments and sources of reference[J]. Measurement Science and Technology, 2001, 12: 89-98.
    [8] LOBO H, COHEN C, UNIUERSITY C. Measurement of thermal conductivity of polymer melts by the line-source method[J]. Polymer Engineering & ence, 1990, 30(2): 65-70.
    [9] VISSER E P, VERSTEEGEN E H, VAN E W J P. Measurement of thermal diffusion in thin films using a modulated laser technique: Application to chemical-vapor-deposited diamond films[J]. Journal of Applied Physics, 1992, 71(7): 3238-3248.
    [10] CHU F I, TAYLOR R E, Donaldson A B. Thermal diffusivity measurements at high temperatures by the radial flash method[J]. Journal of Applied Physics, 1980, 51: 336-341.
    [11] MORAD N A, IDREES M, HASAN A A. Specific heat capacities of pure triglycerides by heat-flux differential scanning calorimetry[J]. Journal of Thermal Analysis, 1995, 45: 1449-1461.
    [12] 康传刚. 求解非线性不适定问题的几类迭代方法[D]. 上海: 上海大学, 2009.
    [13] TIKHONOV A N, GLASKO V B. Use of the regularization method in non-linear problems[J]. USSR Computational Mathematics and Mathematical Physics, 1965, 5(3): 93-107.
    [14] ALIFANOV O M. Methods of solving ill-posed inverse problems[J]. Journal of Engineering Physics, 1983, 45(5): 1237-1245.
    [15] BECK J V. Nonlinear estimation applied to the problem inverse heat conduction[J]. International Journal of Heat and Mass Transfer, 1970, 13: 703-716.
    [16] TIKHONOV A N, GONCHARSKY A V, STEPANOV V V, et al. Numerical methods for the solution of ill-posed problems[M]. [S.l]: Springer, 1995.
    [17] KEANINI R G, LING X, CHERUKURI H P. A modified sequential function specification finite element-based method for parabolic inverse heat conduction problems[J]. Computational Mechanics, 2005, 36(2): 117-128.
    [18] BECK J V, BLACKWELL B, HAJI-SHEIKH A. Comparison of some inverse heat conduction methods using experimental data[J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3649-3657.
    [19] MARCOS B, BOULET M, OUSEGUI A, et al. Comparison of global and sequential methods for an inverse heat transfer problem[J]. Inverse Problems in Science and Engineering, 2011, 19(6): 793-814.
    [20] 石友安, 曾磊, 钱炜祺, 等. 测热试验中瞬态热流的反演研究[J]. 工程热物性学报, 2013, 34(12): 2366-2370.
    [21] 邵元培, 钱炜祺, 周宇, 等. 变几何域传热的表面热流反演方法[J]. 计算力学学报, 2013, 30(2): 296-301.
    [22] CUI Miao, ZHAO Yi, XU Bingbing, et al. Inverse analysis for simultaneously estimating multi-parameters of temperature-dependent thermal conductivities of an Inconel in a reusable metallic thermal protection system[J]. Applied Thermal Engineering, 2017, 125: 480-488.
    [23] PAN Weizhen, YI Fajun, ZHU Yanwei, et al. Identification of temperature-dependent thermal condu-ctivity and experimental verification[J]. Measurement Science and Technology, 2016, 27(7): 075005-1-075005-7.
    [24] NAWAZ A, GORBUNOV S, TERRAZAS-SAL-INAS I, et al. Investigation of slug calorimeter gap influence for plasma stream characterization[C]//Pro-ceedings of the 43rd AIAA Thermophysics Conference. New Orleans, Louisiana: AIAA, 2012: 1-15.
    [25] HIGHTOWER T M, OLIVARES R A, PHILIP-PIDIS D. Thermal capacitance (slug) calorimeter theory including heat losses and other decaying processes:NASA-TM-2008-215364[R].[S.l.]: NASA, 2008.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘威振,易法军.烧蚀防热材料热物性参数辨识方法[J].南京航空航天大学学报,2022,54(S):100-108

复制
分享
文章指标
  • 点击次数:420
  • 下载次数: 2139
  • HTML阅读次数: 349
  • 引用次数: 0
历史
  • 收稿日期:2022-04-20
  • 最后修改日期:2022-06-28
  • 在线发布日期: 2022-11-02
文章二维码
您是第6576726位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!