应用于电机轴承和不对中复合故障的RNN诊断方法
作者:
作者单位:

哈尔滨工业大学电气工程及自动化学院,哈尔滨 150001

作者简介:

通讯作者:

杨明,男,教授,博士生导师,E-mail: yangming@hit.edu.cn。

中图分类号:

TM92

基金项目:

国家自然科学基金(51991385)。


A Diagnosis Method Based on RNN for Motor Bearing and Misalignment Composite Faults
Author:
Affiliation:

School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于伺服电机转速信号的轴承和不对中复合故障的故障诊断方法。首先,探讨了复合故障励磁引起的电机转速变化,分析了通过转速法实现复合故障诊断的理论可行性。实验表明,复合故障中轴承等微弱故障信号的检测容易受到不匹配安装故障的干扰,这将使传统的诊断算法失效。将预处理后的速度信号和通过FFT得到的信号分别通过循环神经网络(Recurrent neural network, RNN),将输入的时域特征和频域特征融合在一起,作为故障分类的基础。这种时频域特征复合RNN模型(Time-frequency feature compound-RNN, TFFC-RNN)对不对中故障干扰下的轴承故障和正常信号的分类准确率可达90%以上。最后,研究了各RNN变体对于模型准确率的影响。实验结果表明利用门控循环单元进行频域部分的特征提取,模型的诊断正确率最高。

    Abstract:

    This paper proposes a fault diagnosis method for bearing and misalignment composite faults based on servo motor speed signals. First, the change of the motor speed caused by compound fault excitation is discussed, and the theoretical feasibility of realizing compound fault diagnosis by the speed method is analyzed. Experiments show that the detection of weak fault signals such as bearings in compound faults is easily disturbed by mismatched installation faults, which makes traditional diagnosis algorithms ineffective. Second, the preprocessed speed signal and the signal obtained by FFT are passed through a recurrent neural network(RNN), and the input time-domain features and frequency-domain features are fused together as the basis for fault classification. This time-frequency feature compound-RNN model (TFFC-RNN) can classify bearing faults and normal signals under the interference of misalignment faults with an accuracy of more than 90%. Finally, the influence of each RNN variant on the accuracy of the model is studied. The experimental results show that the feature extraction of the frequency domain part using the gated recurrent unit has the highest diagnostic accuracy of the model.

    参考文献
    相似文献
    引证文献
引用本文

郭子冉,杨明.应用于电机轴承和不对中复合故障的RNN诊断方法[J].南京航空航天大学学报,2022,54(S):87-93

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-15
  • 最后修改日期:2022-06-30
  • 录用日期:
  • 在线发布日期: 2022-11-02
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司